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Abstract

Thermodynamic calculation of the chemical speciation of proteins and the limits of
protein metastability affords a quantitative understanding of the biogeochemical con-
straints on the distribution of proteins within and among different organisms and chem-
ical environments. These calculations depend on accurate determination of the ion-5

ization states and standard molal Gibbs free energies of proteins as a function of
temperature and pressure, which are not generally available. Hence, to aid predic-
tions of the standard molal thermodynamic properties of ionized proteins as a func-
tion of temperature and pressure, calculated values are given below of the standard
molal thermodynamic properties at 25◦C and 1 bar and the revised Helgeson-Kirkham-10

Flowers equations of state parameters of the structural groups comprising amino acids,
polypeptides and unfolded proteins. Group additivity and correlation algorithms were
used to calculate contributions by ionized and neutral sidechain and backbone groups
to the standard molal Gibbs free energy (∆G◦), enthalpy (∆H◦), entropy (S◦), isobaric
heat capacity (C◦

P ), volume (V ◦) and isothermal compressibility (κ◦T ) of multiple refer-15

ence model compounds. Experimental values of C◦
P , V ◦ and κ◦T at high temperature

were taken from the recent literature, which ensures an internally consistent revision of
the thermodynamic properties and equations of state parameters of the sidechain and
backbone groups of proteins, as well as organic groups. As a result, ∆G◦, ∆H◦, S◦, C◦

P ,
V ◦ and κ◦T of unfolded proteins in any ionization state can be calculated up to T'300◦C20

and P'5000 bars. In addition, the ionization states of unfolded proteins as a function
of not only pH, but also temperature and pressure can be calculated by taking account
of the degree of ionization of the sidechain and backbone groups present in the se-
quence. Calculations of this kind represent a first step in the prediction of chemical
affinities of many biogeochemical reactions, as well as of the relative stabilities of pro-25

teins as a function of temperature, pressure, composition and intra- and extracellular
chemical potentials of O2, H2, NH3, H2PO4 and CO2.
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1. Introduction

The interplay between genomes and their chemical environments, as well as the for-
mation and relative stabilities of proteomes that support life in vastly different parts
of the biosphere have received considerable attention in recent years (Elser et al.,
2000; Gasch et al., 2000; Kato et al., 2004; Tyson et al., 2004; Schulze, 2005; Boon-5

yaratanakornkit et al., 2005). A thermodynamic approach offers a quantitative under-
standing of consequences of biogeochemical reactions. For example, the generation
of pe-pH diagrams of proteins facilitates the understanding of their relative stabilities in
natural gradients of oxidation state and pH, which have been documented in biogeo-
chemical and physiological settings (Schafer and Buettner, 2001; Ding et al., 2001).10

The computerized calculation of these and other types of speciation diagrams, how-
ever, depends on knowing the temperature-, pressure- and pH-dependence of the ion-
ization states and values of the standard molal Gibbs free energies of proteins, which
are generally unavailable.

The purpose of the present study is to develop the ability to calculate the mean net15

charge and values of the standard molal Gibbs free energy (Z and ∆G◦, respectively)
of unfolded proteins as a function of temperature, pressure and pH. Values of ∆G◦ for
proteins and their constituent groups as a function of temperature (T ) and pressure
(P ) are calculated from the revised Helgeson-Kirkham-Flowers (HKF) equation of state
(Helgeson et al., 1981; Tanger and Helgeson, 1988) summarized in Appendix A.20

In the revised HKF equations of state, Pr and Tr represent the reference tempera-
ture and pressure of 1 bar and 298.15 K, Ψ and Θ denote solvent parameters equal
to 2600 bar and 228 K, and ε, εPr ,Tr and YPr ,Tr stand for dielectric properties of pure
water (these and other symbols and abbreviations used in the text are summarized
in Table 1). The species-dependent variables in the revised HKF equations of state25

include ∆G◦
f and S◦

Pr ,Tr
(which along with ∆H◦

f are referred to as the standard molal
thermodynamic properties at 25◦C and 1 bar ), and a1, a2, a3, a4, c1, c2 and ω, known
as the revised HKF parameters. Values of ∆G◦

f , ∆H
◦
f and S◦ of the reference model
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compounds can be taken from the literature or are calculated from those of the corre-
sponding interphase transfer properties. On the other hand, the values of the revised
HKF parameters are obtained from experimental values of C◦

P , V ◦ and κ◦T , or estimated
from correlations with the standard molal thermodynamic properties where experimen-
tal measurements are not available. For example, improved accuracy is acheived in5

estimating the solvation HKF parameter, ω, by retrieving values from calorimetric mea-
surements at high temperature (>100◦C) and from correlations with the standard molal
entropy of hydration (∆S◦

hyd ).
In the present study, we adopt the hypothesis that the properties and parameters dis-

cussed above can be calculated for neutral and ionized unfolded proteins by summing10

those of the constituent sidechain and backbone groups. These group contributions
can be calculated from experimental data for reference model compounds including
amino acids, Gly–X–Gly tripeptides and other polypeptides, and unfolded proteins.
Earlier calculations of this kind were precluded by the dearth of available experimental
data for amino acids (Amend and Helgeson, 1997a). Since then, high-temperature ex-15

perimental data for amino acids (Hakin et al., 1998; Clarke and Tremaine, 1999; Clarke
et al., 2000) and calorimetric and volumetric data for Gly–X–Gly tripeptides (Downes
and Hedwig, 1995; Vogl et al., 1995; Häckel et al., 1998, 1999a,b) have been pub-
lished. As a consequence, improved correlations and group additivity model compound
approximations can be used to estimate the temperature and pressure dependence of20

the standard molal thermodynamic properties of amino acids, polypeptides and un-
folded proteins.

2. Summary of group additivity equations

Group additivty algorithms have been used to calculate the thermodynamic properties
of aqueous organic species both at 25◦C and 1 bar (Cabani et al., 1981) and as a func-25

tion of temperature and pressure (Amend and Helgeson, 1997b). Amino acids have
also been the subject of group additivity analyses of the contributions by backbone
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and sidechain groups (Amend and Helgeson, 1997a), as well as the contributions by
the smaller organic groups that constitute the sidechain groups (Marriott et al., 1998).
In addition, the additivity of standard molal volumes of ionized aqueous organic com-
pounds has been demonstrated (Lepori and Gianni, 2000). Group additivity algorithms
for calculating the thermodynamic properties of neutral proteins have been in place for5

at least 60 years, since Cohn and Edsall (1943) calculated group contributions to the
volumes of aqueous proteins at or near 25◦C. More recent group additivity calculations
of C◦

P of unfolded proteins were carried out for temperature increments ranging up to
125◦C (Makhatadze and Privalov, 1990; Privalov and Makhatadze, 1990; Makhatadze
et al., 1990). The standard molal thermodyanmic properties and revised HKF equa-10

tions of state parameters of nonionized unfolded proteins and those in selected ioniza-
tion states were first calculated by Amend and Helgeson (2000). However, they did not
include contributions by the ionized amino acid backbone or the cysteine or tyrosine
sidechain groups. A group additivity scheme that involved a more complete treatment
of ionization was proposed by Kharakoz (1997) for the calculation of volume and com-15

pressibility of ionized polypeptides and proteins at 25◦C and 1 bar. In the discussion
that follows, the ionization-specific contributions to these and other standard molal ther-
modynamic properties as a function of temperature and pressure will be considered.

In the present study, the standard molal thermodynamic properties of selected refer-
ence sidechain groups are first calculated according to20

Ξ[SC] =
∑
i=1

niΞi , (1)

where Ξi stands for any standard molal thermodynamic property or equation of state
parameter of the i th organic group, ni indicates the number of occurrences of the i th
organic group in the reference sidechain group, and Ξ[SC] represents the calculated
sidechain group contribution. (The definitions of these symbols and the others used25

in the text are summarized in Table 1.) The values of Ξ[AABB] and Ξ[GXGBB] are then
calculated from those of the reference sidechain groups and those of amino acids and

1519
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Gly–X–Gly tripeptides using

ΞAA = Ξ[AABB] + Ξ[SC] (2)

and

ΞGXG = Ξ[GXGBB] + Ξ[SC] , (3)

where [AABB] represents the neutral zwitterionic amino acid backbone group, which5

has a formula of C2H4NO2, [GXGBB] represents the backbone group of Gly–X–Gly
tripeptides, with a formula of C6H10N3O4, and AA, GXG and [SC] represent, respec-
tively, any amino acid, Gly–X–Gly tripeptide, or sidechain group (the italic text is used
to generically identify these species).

Simultaneous consideration of Eqs. (1)–(3) and high-temperature calorimetric data10

for diols and diamines has lead to a revision of the contributions by organic groups
given by Amend and Helgeson (1997b). This revision is summarized in Appendix B.
The primary feature of this revision is the addition of a correction term for bifunctional
compounds such as diols and diamines. In consequence, the contributions by ter-
minal groups such as [−CH3] and [−CH2OH] have been updated, which permits the15

accurate calculation of the contributions by [Ala], [Ser] and the other reference model
sidechain groups to the properties and parameters of both amino acids and Gly–X–Gly
tripeptides.

Using the values of Ξ[AABB], Eq. (2) is used to calculate the contributions by all the
neutral sidechain groups except for [Lys] and [Arg]. This statement can be validated20

by inspection of Fig. 1, which shows the pK a values of the ionization reactions of
sidechain and backbone groups in amino acids as a function of temperature. At 25◦C
and 1 bar, the pK a values can be calculated from the values of ∆G◦

f of amino acids
taken from the literature and summarized in Table 2, but at other temperatures, they are
calculated from values of ∆G◦ predicted from the revised HKF equations of state and25

the equations of state parameters of backbone and sidechain groups derived below. It
is apparent from Fig. 1 that, for the ionizable amino acids other than Lys and Arg, the
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ionization of the sidechain group occurs in conditions where [AABB] is stable relative
to either of its charged counterparts. Consequently, Eq. (2) can be used to retrieve the
thermodynamic properties of most neutral sidechain groups. However, because the
ionizations of [Lys] and [Arg] occur at pHs corresponding to stability of [AABB−], their
properties may be retrieved from5

ΞLys− = Ξ[AABB−] + Ξ[Lys] (4)

and

ΞArg− = Ξ[AABB−] + Ξ[Arg] . (5)

In order to retrieve the thermodynamic properties of charged sidechain groups, we
use charge-explicit versions of Eq. (2), which can be written as10

ΞAA− = Ξ[AABB] + Ξ[SC−] (6)

for [Glu−], [Asp−], [Cys−] and [Tyr−],1 and

ΞAA+ = Ξ[AABB] + Ξ[SC+] (7)

for [His+], [Lys+] and [Arg+].
In order to calculate the group additivity contributions to the standard molal thermo-15

dynamic properties of unfolded proteins, we first choose a hypothetical reference state
corresponding to a nonionized protein, represented by UP 0. Accordingly, the calcula-
tion of Ξ[UPBB] described in Sect. 4 takes account of the properties of unfolded proteins
or polypeptides referenced to their nonionized form, together with the group additivity
scheme adopted by Amend and Helgeson (1997b), which can be written as20

ΞUP 0 = Ξ[AABB] + (n − 1)Ξ[PBB] +
î∑
i=1

n[SC]i
Ξ[SC]i

, (8)

1Standard three-letter abbreviations are used in the text to denote amino acids and
sidechain groups; these or the standard one-letter abbreviations are used in the figures.
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http://www.biogeosciences.net/bgd.htm
http://www.biogeosciences.net/bgd/2/1515/bgd-2-1515_p.pdf
http://www.biogeosciences.net/bgd/2/1515/comments.php
http://www.copernicus.org/EGU/EGU.html


BGD
2, 1515–1615, 2005

Thermodynamic
properties of ionized

proteins

J. M. Dick et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

where [UPBB], and [SC]i represent the protein backbone group (C2H2NO) and the
i th sidechain group, respectively, n stands for the number of residues (length) of the
protein, n[SC]i

designates the number of occurrences of the i th sidechain group in the

protein, and i = 1, 2, ..., î , where î denotes the number of different kinds of sidechain
groups in the protein, which is equal to 20 for proteins consisting of the common5

sidechain groups. It should be noted that [AABB] in Eq. (8) is used to represent the
contribution by the terminal groups to the standard molal thermodynamic properties
and equations of state parameters of unfolded proteins.

Although the application of the group additivity algorithm represented by Eq. (8) is
restricted to neutral unfolded proteins with nonionized sidechain groups, actual pro-10

teins in aqueous solution are ionized, often with large amounts of both positively and
negatively charged groups. Therefore, the comparison in Sect. 5 of experimental and
predicted thermodynamic properties of unfolded proteins takes account of a simple
model of ionization of unfolded proteins.

3. Regression and correlation of the revised HKF equations of state parameters15

of amino acids and Gly–X–Gly tripeptides

The revised HKF equations of state parameters of amino acids and Gly–X–Gly tripep-
tides are summarized in Tables 3 and 4 and are derived from experimental measure-
ments available in the literature of C◦

P , V ◦ and κ◦T of amino acids and C◦
P and V ◦ of

Gly–X–Gly tripeptides as a function of temperature and pressure. Because high-20

temperature (to ˜250◦C) calorimetric data are available for only three amino acids, a
correlation algorithm has been developed to estimate the values of ω of the remainder
of the amino acids. This correlation ofω with the entropy of hydration (∆S◦

hyd ) of neutral
amino acids closely represents the values of the ω parameter in the revised HKF equa-
tions of state. Insufficient high-temperature calorimetric data are available to generate25

a similar regression for charged amino acids, but a correlation between ∆S◦
hyd and ω

of alkali- and flouride- group metal ions can be used to calculate provisional estimates
1522

http://www.biogeosciences.net/bgd.htm
http://www.biogeosciences.net/bgd/2/1515/bgd-2-1515_p.pdf
http://www.biogeosciences.net/bgd/2/1515/comments.php
http://www.copernicus.org/EGU/EGU.html


BGD
2, 1515–1615, 2005

Thermodynamic
properties of ionized

proteins

J. M. Dick et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

of ω of charged amino acids. Calculation of ∆S◦
hyd of both neutral and charged amino

acids depends on the standard molal thermodynamic properties of both the gaseous
and aqueous species. Because the values of ∆G◦

f , ∆H
◦
f and S◦

Pr ,Tr
of gaseous amino

acids are generally not available in the literature, a group additivity algorithm is used in
the present study to calculate them, in the manner described in Appendix C.5

3.1. Thermodynamic properties of aqueous amino acids at high temperature

Values of ω of neutral and charged amino acids can be estimated from correlations
with ∆S◦

hyd in the following manner. Values of ω of Gly, Ala and Pro are independently
regressed using Eq. (A30) and C◦

P data at temperatures >200◦C. A correlation between
ω and ∆S◦

hyd can be observed for these amino acids, and is depicted in Fig. 5. The10

corresponding equations are given in Table 6. The close correspondence apparent for
His and Val in Fig. 2 between the straight lines and the experimental points supports
the extrapolation of the correlation to predict ω of amino acids that have values of
∆S◦

hyd beyond the range represented by Gly, Ala and Pro.
For metal anions and cations, similar correlations can be documented. These corre-15

lations are illustrated in Fig. 5 and are represented by Eqs. (6.2) and (6.3) in Table 6.
Insufficient experimental data at high temperatures and uncertainty of the applicabil-

ity of the revised HKF equations of state (Schulte et al., 2001) lead to a high uncertainty
in the regression of ω from high temperature values of V ◦. It can be seen in Fig. 3 that
V ◦ of Gly, Ala, Pro and Ser at high temperatures predicted using Eqs. (A30) and (A11) is20

consistent with the overall trend of these data, with the exception of Ala, which exhibits
a decrease in V ◦ at elevated temperatures that is larger than predicted. Nevertheless,
an uncertainy in V ◦ of even this magnitude (˜10 cm3 mol−1) corresponds to a relatively
small energetic uncertainty (˜0.25 kcal mol−1 at 25◦C), so the value of ω retrieved from
experimental C◦

P data is preferred. It should perhaps be noted that a constant error V ◦
25

of 10 cm−3 mol−1 would contribute an uncertainty of of 1.2 kcal mol−1 in ∆G◦ at 300◦C
and 5000 kbar, which is considerably less than our estimate for the total uncertainty in

1523
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the calculation of protein free energies (see Sect. 6).
Experimental heat capacities to 125◦C of Gly–Gly–Gly, Gly–Ala–Gly and

Gly–Thr–Gly have been reported (Makhatadze and Privalov, 1990; Downes and Hed-
wig, 1995). The results of iterative estimations of ω of these tripeptides indicate that
the experimental heat capacity data can be closely represented by using values of ω5

given by

ωGly−X−Gly × 10−5 = ωAA × 10−5 − 1.77 , (9)

where ω is in cal mol−1 and ωAA is the value for the corresponding amino acid. Using
Eq. (9), it is possible to calculate the values of ω of the remaining Gly–X–Gly tripep-
tides, which are given in Table 4 and which are used to calculate the values of ∆C◦

P,n10

and ∆V ◦
n plotted in Figs. 7–8. In contrast to those of the amino acids, the values of

ω of the Gly–X–Gly tripeptides are negative. If these values are representative of the
behavior of amino acids and tripeptides at high temperature, measurements near the
critical point of water might indicate that the standard molal thermodynamic proper-
ties of the Gly–X–Gly tripeptides diverge in the opposite direction from those of amino15

acids.
The regression lines in the plots of ∆V ◦

n vs. 1/ (T −Θ) depicted in Fig. 8 for the
Gly–X–Gly tripeptides generally fall within the experimental uncertainty represented by
the brackets, supporting the applicability of the revised HKF equations of state and the
accuracy of the values of ω derived from C◦

P data. Nevertheless, the experimentally20

derived values of V ◦
n at high temperatures are generally lower than those predicted by

the equations of state.

3.2. Regression retrieval of the non-solvation parameters c1, c2, a1, a2, a3 and a4

The experimental or calculated values of C◦
P , V ◦ and κ◦T are combined with values of ω

to give ∆C◦
P,n, ∆Vn and ∆κ◦T,n. The intercepts and slopes of regression lines on plots25

of ∆C◦
P,n vs. 1/ (T −Θ)2 correspond to c1 and c2, respectively, in the revised HKF

1524
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equations of state. On plots vs. 1/ (T −Θ), regression lines of ∆V ◦
n have intercepts

of σ and slopes of ξ, while the intercepts and slopes of regression lines for ∆κ◦T,n
correspond to −

(
∂σ/∂P

)
T and −

(
∂ξ/∂P

)
T , respectively. These regression plots are

shown in Figs. (2)–(4) for amino acids and in Figs. (7)–(8) for Gly–X–Gly tripeptides.
Values of C◦

P and V ◦ that are estimated in the present study are indicated by open5

diamonds. For Gly+, values of C◦
P are calculated by combining values of ∆C◦

P,ion taken
from Wang et al. (1996) with those of C◦

P of Gly calculated using Eq. (A30) and the
revised HKF parameters taken from Table 3. The polynomial fits of the experimental
scanning measurements of C◦

P and V ◦ given by Hedwig et al. have been used to
generate values at 15, 25, 40, 55, 70, 80, 90 and 100◦C.10

The values of c1, c2, σ and ξ of the Gly–X–Gly tripeptides retrieved from the regres-
sion plots are given in Table 4. The values of a2 and a4 of the amino acids are retrieved
from those of −

(
∂σ/∂P

)
T and −

(
∂ξ/∂P

)
T using Eqs. (A27) and (A28), respectively.

The values of a1 and a3 are then calculated from those of σ and a2, and ξ and a4 using
Eqs. (A24) and (A25), respectively. The values of a1, a2, a3 and a4, together with those15

of c1 and c2, are given in Table 3.
In general, experimental compressibility data for the amino acids refer to isentropic

compressibilities (κ◦S ). Accordingly, values of the isothermal compressibilities (κ◦T ) of
the amino acids are calculated from (Desnoyers and Philip, 1972; Amend and Helge-
son, 1997b)20

κ◦T = κ◦S +
T V ◦

H2O
α◦
H2O

(
2E ◦ − V ◦

H2O
α◦
H2O
C◦
P /C

◦
P,H2O

)
C◦
P,H2O

, (10)

where E ◦ represents the isobaric exapansibility of the amino acid and C◦
H2O, V ◦

H2O and
αH2O represent the standard molal heat capacity, volume and coefficient of isobaric
thermal expansion of H2O, respectively. Values of C◦

P , V ◦ and E ◦ are calculated from
the values of c1, c2, σ and ξ determined in the manner described above, and C◦

H2O,25

V ◦
H2O and αH2O are taken from SUPCRT92.
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Experimental data for the charged amino acids and Gly–X–Gly tripeptides are de-
rived from measurements of the corresponding aqueous Na- or Cl- electrolytes. Be-
cause these organic salts can be considered to be completely dissociated under the
conditions of the experiments, their measured properties can be related to those of the
corresponding charged amino acid or Gly–X–Gly tripeptide by subtracting the prop-5

erty of Na+ or Cl− at each experimental temperature, which can be calculated using
SUPCRT92 and the parameters taken from Shock et al. (1997).

Judging from the scatter of the data points, especially those representing values
from different laboratories, the representative uncertainties in the experimental data for
amino acids and Gly–X–Gly tripeptides are equal to 2.5% for C◦

P , 1% for V ◦, and (for10

amino acids) 2.5% for κ◦T . In general, the figures indicate that the revised HKF equa-
tions of state closely represent the bulk of the experimental calorimetric, volumetric,
and compressional data for both the neutral and charged reference model compounds
for protein sidechains.

It should perhaps be noted that the [His] sidechain group, and not the amino acid15

backbone group, is charged when HisHCl dissociates to give His+. Consequently, ∆C◦
P

and V ◦ of HisHCl reported by Jardine et al. (2001) are included in the regression cal-
culations. However, the experimental values of ∆C◦

P and V ◦ of NaHis (Jardine et al.,
2001), NaPro and ProHCl (Sorenson et al., 2003) and NaVal and ValHCl (Price et al.,
2003b), along with the measurements of Wang et al. (1996), are not included in the20

regression calculations. Instead, they are reserved to be used to test the model com-
pound prediction of ∆C◦

P of [AABB+] and [AABB−] (see Sect. 5).

3.3. Model compound and correlation algorithms for non-solvation parameters

Where experimental data are insufficient to regress the revised HKF parameters of
amino acids, model compound algorithms can be used to estimate values of C◦

P and25

V ◦ as a function of temperature. This approach is used to generate values of of C◦
P of

Asp−, Glu−, Cys, Tyr, Cys− and Tyr− and of V ◦ of Cys− and Tyr− at 15, 25, 40 and 55 ◦C,
as well as values of C◦

P and V ◦ of Lys− at 25, 50 and 75◦C. The close correspondence
1526
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between the experimental values of C◦
P of Tyr at 15 and 25◦C and those estimated using

the equations in Table 5 provides support for the use of these equations for estimating
C◦
P at higher temperatures. The values calculated in this manner are included in the

subsequent regression analysis of the revised HKF parameters, described above, and
are identified in Figs. 2 and 3 by open diamonds.5

Experimentally unconstrained parameters of amino acids with charged counterparts,
i.e. Arg− and Lys, can be estimated by taking account of the corresponding ionizations
of other amino acids. For example, c2 and ξ of Lys are calculated from

ΞLys = ΞLys+ + ΞArg − ΞArg+ . (11)

The values of c1 and σ of Lys are then fixed by the available values of C◦
P and V ◦ of Lys10

at 25 ◦C and 1 bar (Jolicoeur et al., 1986). However, because no experimental data can
be found for C◦

P and V ◦ of Arg−, the values of c1, c2, σ and ξ of Arg− are all estimated
from

ΞArg− = ΞArg + ΞLys− − ΞLys . (12)

Finally, correlations between known values of V ◦, a2 and a4 of amino acids are used15

to predict values of a2 and a4 of Arg, Arg−, Asp, Cys−, Lys, Lys− and Tyr−. Such an ap-
proach was already used for amino acids (Amend and Helgeson, 1997a) and for other
organic species (Plyasunov and Shock, 2001). Updated correlations for the amino
acids are depicted in Fig. 6, and the corresponding equations are given in Table 6.
The intercepts of correlation lines in this figure are charge-dependent, but the slopes20

in a first approximation can be considered to be independent of charge. This interpre-
tation is consistent with the provisional correlations adopted by Amend and Helgeson
(1997a), which were restricted at that time by the available experimental data for ion-
ized amino acids.
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4. Group additivity calculation of the contributions by sidechain and backbone
groups to the properties and parameters of unfolded proteins

The thermodynamic properties of [AABB] can be assessed by from the group additiv-
ity regression plots of ∆H◦

f , ∆S
◦, C◦

P , V ◦, c2 and ξ shown in Figs. 9 and 10. In the
latter figure are also depicted regression plots of C◦

P , V ◦, c2 and ξ of [GXGBB]. Be-5

cause fewer reference model sidechain groups or amino acids have regressed values
of a2, a4 and ω, these parameters are correlated in the manner described below. The
sidechain groups represented by [Ala], [Ser], [Glu], [Gln], [Leu] and [Phe] are chosen
as the reference model sidechain groups. Respectively, they contain the terminal and
branched organic groups represented by [−CH3], [−CH2OH], [−COOH], [−CONH2],10

[−CHCH3−], and [−C6H5]. In these sidechain groups, n[−CH2−] is equal to 0 in [Ala]
and [Ser], 1 in [Leu] and [Phe], and 2 in [Glu] and [Gln]. In selecting this representative
set, Glu and Gln are chosen over their counterparts with shorter chains (Asp and Asn).
Also, Leu is included instead of the shorter-chain Val and the isomer Ile, in which the
branch occurs closer to the backbone. Although [Lys] contains the terminal group rep-15

resented by [−CH2NH2], Lys is not included as a model compound for Ξ[AABB] because
the sidechain group of neutral Lys is charged (see Table 2).

4.1. ∆G◦
f , ∆H

◦
f and S◦

Pr ,Tr

It can be deduced from Fig. 9 that the symbols representing ∆H◦
f and S◦

Pr ,Tr
of the neu-

tral reference amino acids as a function of ∆H◦
f and S◦

Pr ,Tr
of the sidechain groups are20

consistent with regression lines of unit slope. It follows from Eq. (2) that the intercepts of
these regression lines correspond to ∆H◦

f and S◦
Pr ,Tr

of [AABB]. Likewise, the intercepts
of the regression lines in Fig. 9 for ∆H◦

f and S◦
Pr ,Tr

of the charged reference amino acids
as a function of ∆H◦

f and S◦
Pr ,Tr

of the sidechain groups correspond to ∆H◦
f and S◦

Pr ,Tr
of

[AABB+] and [AABB−]. Glu− is excluded from consideration in the calculations of ∆H◦
f25

and S◦
Pr ,Tr

of [AABB−] because the negative charge of Glu− occurs on its sidechain
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group, rather than on the amino acid backbone group (see Table 2). The values of ∆H◦
f

and S◦
Pr ,Tr

of [AABB], [AABB+] and [AABB−] retrieved from Fig. 9 are given in Table 8,
together with corresponding values of ∆G◦

f calculated from ∆G◦
f = ∆H◦

f − T∆S
◦
f and S◦

of the elements.

4.2. C◦
P , V ◦ and κ◦T5

The values of c1, c2 and ω of [AABB+] are calculated from

Ξ[AABB+] = Ξ[AABB] + ΞGly+ − ΞGly . (13)

In contrast, the remaining equations of state parameters of [AABB+], and those of
[AABB−], are calculated from those of Asp and Lys. These amino acids with ionizable
sidechain groups are chosen to model the properties of ionized amino acid backbone10

groups because their sidechain groups most closely resemble the structure of the ioniz-
able groups in the amino acid backbone group. Accordingly, the parameters of [AABB+]
and [AABB−] in the revised HKF equations of state can be calculated from

Ξ[AABB+] = Ξ[AABB] + ΞAsp − ΞAsp− (14)

and15

Ξ[AABB−] = Ξ[AABB] + ΞLys− − ΞLys , (15)

where Ξ stands for a1, a2, a3 or a4 of [AABB+] or c1, c2, a1, a2, a3, a4 or ω of [AABB−].
Compared to the zwitterionic [AABB], the net charge on [AABB+] arises from neutral-
ization of the negatively charged carboxylic acid group; this explains why ΞAsp and
ΞAsp− are used to calculate its parameters. Similarly, ΞLys and ΞLys+ are used to derive20

the parameters of [AABB−].

4.3. Sidechain groups and ionization

The standard molal thermodynamic properties and equations of state parameters of
the neutral sidechain groups except [Lys] and [Arg] are calculated by taking account

1529

http://www.biogeosciences.net/bgd.htm
http://www.biogeosciences.net/bgd/2/1515/bgd-2-1515_p.pdf
http://www.biogeosciences.net/bgd/2/1515/comments.php
http://www.copernicus.org/EGU/EGU.html


BGD
2, 1515–1615, 2005

Thermodynamic
properties of ionized

proteins

J. M. Dick et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

of the properties of the amino acids given in Tables 2 and 3, and the group additivity
algorithm represented by Eq. (1). Because the pK s of [Lys] and [Arg] lie within the
stability field for [AABB−] over most of the experimental temperature range (see Fig. 1),
the values of the standard molal thermodynamic properties and equations of state
parameters of [Lys] and [Arg] are calculated from Eqs. (4) and (5).5

Comparative calculations summarized in the subsequent pages strongly support
the hypothesis adopted above that the standard molal thermodynamic properties and
equations of state parameters of neutral protein sidechain groups are equal in a first
approximation to those of the neutral sidechain groups in amino acids. In contrast,
equilibrium constants of the ionization reactions of sidechain and backbone groups in10

unfolded aqueous proteins may differ considerably from those of the corresponding
amino acid ionization reactions (Nozaki and Tanford, 1967a). Accordingly, calculated
and experimental values of the standard molal Gibbs free energies of ionization (∆G◦

ion)
at 25◦C and 1 bar and the pK s of deprotonation reactions of sidechains and [AABB]
are listed in Table 9. The experimental values shown in this table are consistent with15

observations of the ionization behavior of a number of polypeptides and unfolded pro-
teins, so in a first approximation they can be considered representative of the ionization
of sidechain and terminal groups in unfolded proteins. This observation is further sup-
ported by independent evidence that specific types of ionizable sidechain groups in
unfolded proteins tend to have unique equilibrium constants, while those in folded pro-20

teins are much more variable (Tollinger et al., 2003). It can be seen in Table 9 that
the pK s at 25◦C and 1 bar of the ionization reactions of [Asp], [Glu], [His], [Cys], and
[Tyr] in amino acids and proteins differ from those in unfolded proteins by 0.50 or less.
However, the pK s of [AABB] in amino acids and [AABB] in unfolded proteins differ by
more than a log unit.25

4.4. ∆G◦
f , ∆H

◦
f and S◦ of [UPBB]

Amend and Helgeson (2000) estimated values of ∆H◦ and S◦ from those of [UPBB]

1530
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and

Ξ[UPBB] + Ξ[Gly] = Ξdiketopiperazine/2 , (16)

using the properties of diketopiperazine given by Shock (1992). Because ∆H◦
f and S◦

estimated in this manner are used to calculate ∆G◦
f of [UPBB], the uncertainty in such

a characterization contributes considerably in the calculation of Gibbs free energy at5

elevated temperatures and pressures. Diketopiperazine is a circular dipeptide that
might be expected to behave differently than polypeptide chains or unfolded proteins.
Therefore, linear dipeptides for which ∆H◦ and S◦ are known are included in the present
analysis. The properties of [UPBB] can be estimated from the model compound and
group additivity statements represented by10

Ξ[UPBB] = Ξ[AABB] + ΞGlyGly −
(
ΞGly + ΞGly

)
, (17)

Ξ[UPBB] = Ξ[AABB] + ΞAlaGly −
(
ΞAla + ΞGly

)
, (18)

Ξ[UPBB] = Ξ[AABB] + ΞLeuGly −
(
ΞLeu + ΞGly

)
, (19)15

Values of ∆G◦
f , ∆H

◦
f and S◦ of the dipeptides can be found in Shock (1992). Unlike

the present study, the entropies of the elements used by Shock (1992) are from Wag-
man et al. (1982). Nevertheless, differences between these and the values used in
the present study lead to variations in the calculation of ∆G◦

f that are less than an or-
der of magnitude smaller than the uncertainties associated with the model compound20

analysis. These four equations yield ∆H◦
f ,[UPBB]= −44.08, −48.04, −43.49 and −45.29

kcal mol−1 and S◦
[UPBB]= 9.44, −5.44, 4.88 and −2.40 cal mol−1 K−1, respectively. The

averages of these values are given in Table 8, as are the uncertainties involved, which
are estimated from the differences between the values calculated from Eqs. (16)–(19).
The estimated uncertainty in ∆G◦

f is smaller than that in ∆H◦
f , which is consistent with25

the scatter of the values of ∆G◦
f (−22.64, −21.84, −20.34, −19.99 kcal mol−1) that can

1531
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be calculated from the above equations. However, to ensure consistency, the value of
∆G◦

f given in Table 8 is not the average of the afore-mentioned values, but instead is
calculated from ∆H◦

f ,[UPBB], S
◦
[UPBB], and S◦ of the elements.

The refinement of ∆G◦
f , ∆H

◦
f and S◦ is possible by considering equilibrium constants

and enthalpies of dissolution of crystalline proteins, or by taking into account the mea-5

sured enthalpies and Gibbs free energies of polypeptides, or preferably, entire proteins.
Such a characterization, however, depends on the quantification of the activity coeffi-
cients of folded proteins (because the dissolution experiments take place in relatively
high ionic strength solutions), as well as the measurement or prediction of the proper-
ties of protein unfolding (because the dissolution experiments yield folded proteins in10

solution). However, this calculation outside the scope of the current investigation.

4.5. C◦
P and V ◦ of [UPBB] and [PPBB]

The reference values of C◦
P and V ◦ of [UPBB] and [PPBB] can be calculated from

the corresponding experimental measurements of nonionized unfolded proteins (ΞUP 0)
using the group additivity algorithm represented by Eq. (8). The reference proteins15

chosen for this calculation include the eight proteins listed in Table 11 for which Privalov
et al. have measured C◦

P and/or V ◦ from 25 to 100◦C. Their reported values at 125◦C,
which are actually derived using group additivity, are included in Figs. 11 and 12, and
generally are consistent with the trend of the regression lines. It has been shown in
calorimetric experiments that the measured C◦

P and V ◦ of protein ionization reactions20

are essentially compensated by corresponding reactions with the denaturing buffer.
In addition, experimental values of the standard molal heat capacities as a function
of temperature of four unfolded proteins in the reference set were found to approach
common values despite variations in solution pH from 2 to 6 (Privalov et al., 1989),
supporting the notion that there is a compensating effect and that the measured values25

reflect the properties of nonionized proteins. Consequently, we consider the data from
calorimetric measurements of V ◦ and C◦

P of unfolded proteins in a denaturing buffer to
represent reference values for nonionized unfolded proteins.
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Even in a strong denaturant such as 8M GuHCl, unfolded proteins in aqueous so-
lution may not adopt completely unstructured conformations (Georgescu et al., 2001).
The degree of formation of secondary structure in unfolded proteins also depends on
other solution conditions including temperature and pH (Guzman-Casado et al., 2003).
The formation of secondary structure, and decrease of exposure to the solvent, may5

result in deviations of the standard molal thermodynamic properties from the values
predicted by group additivity. Such a deviation has been noted for heat capacity by
Georgescu et al. (2001) and Guzman-Casado et al. (2003), among others. In con-
trast to proteins, polypeptides have more random conformations in aqueous solutions.
Accordingly, pentapeptides are used as the reference model compounds to calculate10

the values of C◦
P and V ◦ of [PPBB]. Because the values of C◦

P and V ◦ of [UPBB] and
[PPBB] discussed below are derived from experimental properties of unfolded proteins
and pentapeptides, respectively, they implicitly reflect the consequences of the actual
conformation of the molecules, such as the effects of the φ and ψ angles on thermo-
dynamic properties. These angles are not fixed in unfolded proteins, and they may be15

especially variable for small sidechain groups such as [Gly]. Consequently, a higher
uncertainty would be expected with the calculation of the properties and parameters
of [PPBB] from polyglycine peptides. In contrast with other studies, therefore, polyg-
lycines are not used here as model compounds for the properties of [PPBB].

Regression lines for c1, c2, σ and ξ of [UPBB] and [PPBB] are shown in Figs. 11 and20

12. The values of c2 represented by the slopes of the lines are common to both [UPBB]
and [PPBB]. In contrast, the intercepts of the correlation lines, representing values of
c1, are different for [UPBB] and [PPBB]. Note that, within the scatter of the experimental
data points represented by the symbols, the contributions by the sidechain groups
derived from amino acids and those derived from experimental data for the Gly–X–Gly25

tripeptides (see above) results in the same values of ∆C◦
P,n and ∆V ◦

n of [UPBB] and
[PPBB]. As in the case of c2, the values of σ and ξ are respectively identical for [UPBB]
and [PPBB]. The latter values are combined with estimated values of a2 and a4 derived
in the manner described below, to calculate the values of a1 and a3 of [UPBB].
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4.6. κ◦T , a2 and a4 of [UPBB]

The isothermal compressibility (κ◦T ) at 25◦C and 1 bar of [UPBB] can be calculated
from the measured compressibilities of poly-d,l-alanine and poly-glutamic acid and κ◦T
of [Ala] and [Glu] using the relations

κ◦T,[UPBB] = κ
◦
T,poly−d,l−alanine − κ

◦
T,[Ala] (20)5

and

κ◦T,[UPBB] = κ
◦
T,poly−glutamic acid − κ

◦
T,[Glu]

, (21)

which yield values of the isothermal compressibility of [UPBB] of −13.40 × 10−4 and
−13.98 × 10−4 cm3 bar−1 mol−1, respectively. In Eqs. (20) and (21), the isothermal
compressibilities of the polypeptides are calculated using Eq. (10) and the values of10

κ◦S measured by Kharakoz (1997). The values of C◦
P , V ◦ and E ◦ of the polypeptides in

Eq. (10) are estimated using the revised HKF equation of state and the properties and
parameters of the sidechain and backbone groups taken from Table 10, along with the
values of σ and ξ of [UPBB] calculated above.

The group additivity algorithm used by Amend and Helgeson (2000) to calculate15

values of a2 and a4 of [UPBB] is given by

Ξ[UPBB] = Ξ[AABB] + 2Ξ[−CH2] − Ξ[−CH2OH] − Ξ[−CH3] , (22)

where Ξ represents a2 or a4 of the subscripted group. Using this equation and the
group contributions given in Table 10, results in a2,[UPBB] × 10−2 = −3.75 cal mol−1

and a4,[UPBB] × 10−4 = −1.53 cal mol−1 K. In the revised HKF equations of state, these20

values, when taken together with the value of ω[UPBB] give κ◦T,[UPBB] = −37.15 × 10−4

cm3 bar−1 mol−1. This is considerably lower than the value obtained above for the
polypeptides. Accordingly, to minimize uncertainty in the prediction of κ◦T at 25◦C and 1
bar, the value of a2 of [UPBB] adopted in the present study is calculated using Eq. (22).
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In contrast, the value of a4 of [UPBB] is selected so that the additivity calculation of
κ◦T,[UPBB] at 25◦ and 1 bar is equal to the average of the results of Eqs. (20) and (21).

5. Comparision of calculated and experimental heat capacities, ionization con-
stants and charges of amino acids and unfolded proteins

Experimental data not included in the regression calculations can be used to test the5

accuracy of the predictions of thermodynamic properties of ionized amino acids and
proteins. Comparative calculations of this kind are presented below for the heat ca-
pacities and ionization constants of amino acids at high temperature, for the ionization
states and heat capacities of unfolded proteins as a function of pH and temperature,
and for the enthalpies of solution of proteins at 25◦C and 1 bar.10

5.1. C◦
P and pK of amino acid ionization at high temperature

Experimental values of ∆C◦
P,r of the ionization reaction represented by [AABB+] 


[AABB] + H+ are available to ≥120◦C for Gly, Ala, Pro and Val. These are shown in
Fig. 13 along with the values of ∆C◦

P,r as a function of temperature calculated from the
group contributions to Ξ[AABB] and Ξ[AABB+] given in Tables 8 and 10. The calculated15

values of ∆C◦
P,r shown in Fig. 13, track closely with the experimental data for Gly ion-

ization, from which the group contributions were derived. At low temperatures, they
are also consistent with experimental values of ∆C◦

P,r of the other amino acids shown
in the figure (Gly, Pro and Val), but at temperatures >80◦C, the experimental values
diverge, by as much as 30 kcal mol−1. These differences in the ionization properties of20

the amino acid backbone group may arise from interactions with the sidechain group,
as well as from differences in experimental conditions, possibly leading to degradation
of the amino acids at high temperatures. The latter explanation seems reasonable, as
the ∆C◦

P,r data below 80◦C seem to indicate a unique backbone contribution, regard-
less of the sidechain group present. The present calculations closely represent these25
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low-temperature measurements, and split the difference between the measurements at
high temperatures. The coincidence of predicted and measured values of pK at even
higher temperatures, to 250 ◦C (lower panel of Fig. 13) further supports the applicability
of the group contributions at hydrothermal conditions.

It can be deduced from Fig. 13 that n-carboxylic acids do not appear to be suit-5

able model compounds for the estimation of C◦
P of [AABB+]. This might be because

the ionization of [AABB] involves the destructrion of a zwitterion. On the other hand,
propanoic and butanoic acids remain appropriate model compounds for [Asp+] and
[Glu+], because no zwitterion is destroyed in their ionization.

5.2. Mean net charge of unfolded proteins as a function of temperature and pH10

Assuming no interaction among the ionization groups of unfolded proteins, the degree
of formation of the i th ionized group (αi ) can be calculated from

αi =
1

1 + 10Zi (pH−pK )
, (23)

where Zi is the formal charge on the i th ionized group. pK is equal to the negative
logarithm of the deprotonation reaction involving any of the charged groups, and can15

be calculated using the revised HKF equations of state and the group contributions
given in Tables 8 and 10. Because there may be many charged groups in a protein
molecule, the mean net charge (Z) is defined; it reflects the contributions by all the
ionizable groups in the protein molecules to the total charge (Edsall and Wyman, 1958).
It follows that Z of any unfolded protein can be calculated from20

ZUP =
∑
i

niαiZi . (24)

Eq. (24) permits the calculation of protein charge as a function of not only pH, but
also temperature and pressure. The results of this calculation can be compared with
the experimental values at 25◦C represented in Fig. 14. The calculations reveal that,
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compared with the measurements of Z in 6 M guanidinium hydrochloride (GuHCl,
a common laboratory denaturant), the calculations underestimate the Z at pHs & 8.
This is most likely a consequence of disulfide bonds that are retained in the unfolded
proteins under oxidizing experimental conditions. Although proteins adopt an unfolded
conformation in aqueous solutions of 6 M guanidinium hydrochloride (GuHCl), any5

disulfide bonds that are present in the native state may remain intact, depending on
the oxidation state of the system. Support for this hypothesis has been provided by
spectroscopic measurements on RNAS1 BOVIN and LYC CHICK in 6 M GuHCl, with
or without a reducing agent (dithiothreitol) in the solution (Hu and Zou, 1992, 1993).
Each of these proteins contain 8 Cys residues that form 4 disulfide bonds in the native10

protein (Neumann et al., 1964). If the experimental conditions under which the titration
data were obtained were sufficiently oxidizing (which is the most likely case, since
no attempt was made to provide reducing conditions in the measurements), there is
no stability field for Cys−, relative to Cys, no matter how high the pH. Under these
conditions, therefore, accurate calculation of the ionization state of disulfide-containing15

unfolded proteins can be accomplished by removing from consideration the ionization
of the Cys sidechains.

Experimental measurements of the temperature dependence of charge of unfolded
proteins is minimal, but Cohn and Edsall’s (1943) titrations of crystalline horse serum
albumin over the temperature range 5–25◦C indicate that protein net charge decreases20

considerably with increasing temperature at high pH, but varies much less at pHs .6.
This observation is in qualitative agreement with the results shown in Fig. 14.

5.3. C◦
P and G◦ of unfolded proteins as a function of temperature, pH, and oxidation

state of Cys sidechain groups

The ionization of groups in proteins contributes not only to Z , but also to the standard25

molal thermodynamic properties of unfolded proteins. Equation (24) can be rewritten
to account for the ionization contribution to the net protein property, represented by
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∆Ξion:

∆Ξion =
∑
i

niαi∆Ξion,i , (25)

where ∆Ξion,i ,j represents ∆C◦
P,ion or ∆G◦

ion of the ionization reaction of the i th charged
sidechain or backbone group. Any standard molal thermodynamic property of an ion-
ized unfolded protein (Ξ

UP ZUP
) can then be calculated by summing Eqs. (8) and (25) to5

give

Ξ
UP ZUP

= ΞUP 0 +
∑
i

niαi∆Ξion,i . (26)

Values of ∆G◦ calculated using Eq. (26) as a function of ionization state and tem-
perature are shown in Fig. 14. For 25◦C, the results of the same calculation, but with
the exclusion of [Cys] ionization, are shown by the dashed curves. It is evident that the10

ionization contributions by even a single type of reside can contribute substatially to the
thermodynamic properties of proteins. In the future, the contributions by the disulfide
group should also be quantified.

6. Estimated uncertainties in the calculation of the standard molal thermody-
namic properties of amino acids, sidechain groups and unfolded proteins as15

a function of temperature and pressure

These uncertainties are representative of amino acids, sidechain groups, and unfolded
protein backbone groups. In some cases, discussed above, the trend of experimental
data suggest that there is greater uncertainty in the calculation of these properties at
high temperature. The following discussion of uncertainty is limited to amino acids,20

unfolded proteins and their constituent groups. However, a similar interpretation may
be made for Gly–X–Gly tripeptides, and polypeptides. It can be seen by comparing
the number of significant figures given for the properties and parameters in Tables 8,
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10 and 3 that the precisional uncertainty is generally at least an order of magnitude
smaller than the estimated uncertainties in AA and [SC] described below.

6.1. Amino acids

The uncertainties, as well as the values of ∆G◦
f , ∆H

◦
f and S◦

Pr ,Tr
of the aqueous amino

acids given in Table 2 are taken from Amend and Helgeson (1997a), who assigned5

the uncertainties on the basis of experimental error apparent in the measurements
of the solubilities and enthalpies of solution of amino acids. The uncertainties in the
non-solvation revised HKF regression parameters are estimated from the scatter of the
symbols shown in the regression plots in Figs. 2–4. The consequent uncertainties of
c1 and c2 are given in Table 3. The uncertainties of the other non-solvation regression10

parameters are ±1.2 cm3 mol−1 for σ, ±1.5 × 102 cm3 mol−1 K−1 for ξ, ±3 × 10−4

cm3 bar−1 mol−1 for
(
∂σ/∂P

)
T and ±5 × 10−2 cm3 bar−1 mol−1 for

(
∂ξ/∂P

)
T . From

these values, the uncertainties in a1, a2, a3 and a4 can be calculated by taking the
absolute value of the revised HKF equations of state expression containing known
parameters. For example, δa3 (the estimated uncertainty in a3) can be calculated15

using a rearrangement of Eq. (A25):

δa3 = ±
∣∣∣∣δξ − δa4

Ψ+ P

∣∣∣∣ , (27)

where δξ and δa4 represent the uncertainties in the corresponding parameters.
The uncertainties in ∆G◦

f , ∆H◦
f and S◦ of amino acids may in fact be higher than

those we report here. These values from Amend and Helgeson (1997a) and Shock20

(1992) for Gly, Ala and Leu differ by as much as 1.93 kcal mol−1 (∆H◦
f ) and 1.45 cal

mol−1 K−1 (S◦
Pr ,Tr

).
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6.2. Sidechain groups

The total uncertainties in the group additivity calculation of ∆H◦
f and S◦

Pr ,Tr
and the

revised HKF parameters of [AABB] can be inferred from the scatter of data points in
the regression plots shown in Figs. 9 and 10. To estimate the contributions by the
sidechain groups to the total uncertainties in these properties and parameters, we5

adopt in a first approximation the hypothesis that [AABB] and [SC] contribute equally
to the total group additivity uncertainty. Therefore, we can write

δΞ[SC] = δΞgroup additivity/2 , (28)

where δΞgroup additivity stands for the total group additivity uncertainty, which is repre-
sented in Figs. 9 and 10 by the length of the error bars. Eq. (28) is used to estimate the10

uncertainties of ∆H◦
f , S

◦
Pr ,Tr

, ∆G◦
f , c1, c2, a1 and a3 of [SC] listed in Tables 8 and 10.

Although the uncertainties in the values of a2, a4 and ω of [SC] can not be estimated
in this manner, we take provisional values that are equal to twice the corresponding
uncertainties of AA.

There may be compensating uncertainties in ∆H◦
f and S◦

Pr ,Tr
of the species and the15

reference model compounds used in the calculations that lead to an uncertainty in
∆G◦

f . Accordingly, although the value of ∆G◦
f of [AABB] is calculated from the values

of ∆H◦
f and S◦

Pr ,Tr
derived from the regression plots shown in Fig. 9, a group additivity

regression analysis of the calculated values of ∆G◦
f – similar to that shown for ∆H◦ and

S◦ in Fig. 9 – is needed to compute a regression uncertainty in this property. The result20

of this analysis indicates that the uncertainty in ∆G◦
f is smaller than the uncertainty in

∆H◦
f .

6.3. Protein backbone groups

The uncertainties in ∆G◦
f , ∆H

◦
f and S◦

Pr ,Tr
of [UPBB] are discussed in Sect. 4.4. Consid-

eration of the scatter of points apparent in the amino acid sidechain plots of Figs. 1125

and 12 indicates the uncertainties in c1, c2, σ and ξ of the group additivity analysis,
1540
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which can be expressed as

δΞgroup additivity = δΞ[SC] + δΞ[UPBB] . (29)

For the group additivity analysis, [SC] and [UPBB], respectively, the uncertainties in c1

and c2 are (3.0, 1.8, 1.2) cal mol−1 and (2.4, 0.8, 1.6) cal mol−1 K−1. Likewise, the
uncertainties in σ and ξ are (2.0, 0.8, 1.2) cm3 mol−1, and in ξ are (240, 40, 200) cm3

5

mol−1 K−1 (for [SC], the uncertainties in σ and ξ are roughly equal to those in a1 and a3,
respectively, after conversion from caloric to volumetric units). Because a2 and a4 of
[UPBB] are calculated from Eq. (22) their uncertainties can be considered comparable
to those of AA. Finally, the uncertainties in a1 and a3 of [UPBB] are calculated using
Eq. (27) and its counterpart for σ. The uncertainty in ω of [UPBB] is probably of the10

order of that of [SC].

6.4. Uncertainties of standard molal thermodynamic properties as a function of tem-
perature and pressure

Propagated uncertainties in ∆G◦, ∆H ◦, S◦, C◦
P , V ◦ and κ◦T calculated as a function

of temperature and pressure are given in Table 12. Because the uncertainties are15

expressed as average errors, the propgated uncertainties are computed by summing
the absolute value of each term in the corresponding equation. (If the uncertainties
were expressed as standard deviations, this calculation would be performed by taking
the square root of the sum of squares of each term.) For example, the uncertainty
propagated to V ◦ can be calculated using a rearrangement of Eq. (A31):20

δV ◦ = |δσ | +
∣∣∣∣ δξ
T −Θ

∣∣∣∣ + |δωQ| , (30)

where δV ◦, δσ, δξ and δω represent the uncertainties in the values of V ◦, σ, ξ and ω.
Because the absolute value of each term is summed, regardless of the sign present in
the original equation, propagated uncertainties represent estimated maximum uncer-
tainties, and the actual uncertainty will most likely be much smaller. The propagated25
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uncertainties in ∆G◦ and C◦
P are depicted in Fig. 16 over the temperature range 25–

250◦C at PSAT as percentages of the average value of the 20 neutral amino acids. It can
be concluded that, although the equation of state parameters, particularly ω, govern
the uncertainty apparent in the calculation of ∆C◦

P at high and low temperatures, the
largest source of error in the calculation of ∆G◦ as a function of temperature is not un-5

certainty in the equations of state parameters, but instead the uncertainty in ∆G◦
f and

S◦
Pr ,Tr

.
It might be noted that the estimated uncertainties in ∆H◦, S◦, C◦

P , V ◦ and κ◦T actually
decrease with increasing pressure. For C◦

P , V ◦ and κ◦T , this is a consequence of the
smaller values of uncertainty contributions by the non-solvation terms, as well as the10

smaller values of X , Q and N – and therefore of the solvation terms – at elevated
pressures. In addition, the estimated uncertainties in the calculation of ∆G◦ of amino
acids and sidechain and protein backbone groups shown in Table 12 increase only
moderately over this range of temperature and pressure. However, above 300◦C and
5000 bar, the predictions of the derivative properties – particularly C◦

P – are much more15

uncertain; in general, then, these might be considered upper limits for the applicability
of the group additivity and equation of state calculations in the current context.

6.5. Comparison with other estimates of uncertainty

Our estimated uncertainty of V ◦
Pr ,Tr

of [SC] (±7.2 cm3 mol−1) is comparable to the largest
differences between experimental and calculated volumes observed by Hnědkovský20

and Cibulka (2004), who used group additivity to model the volumes of benzene
and aliphatic hydroxyl derivatives including carboxylic acids and alcohols. However,
it should perhaps be emphasized that these high deviations are not representative of
group additivity in general. For example, other group additivity schemes have been
shown to reproduce the volumes of the reference compounds with accuracies ap-25

proaching ±1 cm3 mol−1 or less (Lepori and Gianni, 2000; Hnědkovský and Cibulka,
2004). Also in the pursuit of predicting the thermodynamic properties of organic so-
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lutes, Cabani et al. (1981) developed a group additivity scheme that includes a con-
stant contribution to each species. Their estimated uncertainties in C◦

P and V ◦ at 25◦C
and 1 bar are ±3.2 cal mol−1 and ±0.70 cm3 mol−1, respectively. We expect that the
actual uncertainties in the current calculations to be of this order.

The combined uncertainties in the calculation of ∆G◦ of each protein residue (i.e.5

[SC] and [UPBB]) are considerably greater than the target of ±0.1 kcal mol−1 recom-
mended by Dill (1997) for group additivity calculations of the energetics of conforma-
tional interactions of proteins such as protein unfolding and other non-covalent struc-
tural changes. Nevertheless, the current method affords a close approximation of the
standard molal thermodynamic properties of proteins of differing covalent (or primary)10

structure, which can be used a reference point for beginning more refined calculations
of the properties of folded proteins and their natural complexes.

7. Discussion

7.1. Comparison with other estimates of group additivity uncertainty

Although there are no experimental values of ∆G◦ of ionized unfolded proteins to com-15

pare with the predictions, experimental values of C◦
P as a function of temperature and

pH are available for at least three proteins not included in the regression calculations
(Laderman et al., 1993; Guzman-Casado et al., 2003). A comparison between the
experimental values and the predicted values of C◦

P of nonionized proteins as a func-
tion of temperature and of C◦

P of ionized proteins as a function of temperature and pH20

is depicted in Fig. 15. It can be seen in this figure that predicted values for nonion-
ized unfolded proteins are in general higher than the measured values. (However, it
should perhaps be noted that our predictions for the nonioinzed unfolded proteins are
comparable to values of C◦

P of unfolded proteins calculated by Guzman-Casado et al.
(2003), using the group contributions given by Makhatadze and Privalov (1990).) In25

contrast, the predicted values of C◦
P of ionized proteins at experimental pHs much more
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closely represent the experimental data. Such a consideration of ionization contribu-
tions to the standard molal thermodynamic properties of unfolded proteins may lead
to an altered interpretation of the differences between experimental and additive heat
capacities, which have been commonly attributed to the formation of residual structure
(Georgescu et al., 2001; Guzman-Casado et al., 2003).5

7.2. Departures from ideality

Activity coefficients of ionizable groups in proteins would be expected to depart signifi-
cantly from unity in high ionic strength solutions such as 6 M GuHCl. Also, interactions
between the ionized groups in unfolded proteins might contribute to their thermody-
namic properties (Whitten and Garcı́a-Moreno E., 2000). A number of models have10

been proposed that take these considerations into account, such as the Linderstrom-
Lang model (Nozaki and Tanford, 1967b). A limitation of such models is their applica-
bility at present to only ambient conditions, but in the future it may be possible to extend
them to higher temperatures and pressures.

It should be apparent from Fig. 10 that the both amino acids and Gly–X–Gly tripep-15

tides are well suited to group additivity analysis, which was not the conclusion reached
by Hedwig and Hinz (2003). They, and Hakin and Hedwig (2001a), hypothesized that
the zwitterionic backbone interacts significantly with the sidechain groups of amino
acids. However, the terminal groups of tripeptides, and of unfolded proteins them-
selves, behave as zwitterions over much of the pH range, and it is probably the case20

that there are significant interactions between them and the sidechain groups.
Either amino acids or Gly–X–Gly can serve as model compounds for the sidechains;

indeed, some of the Gly–X–Gly data are used to estimate the properties of, for exam-
ple, [Cys] where amino acid data is lacking. Because the data available for Gly–X–Gly
include ∆C◦

P and V ◦, but do not include ∆G◦
f , ∆H

◦
f or S◦ or κ◦T , the experimental data25

available for amino acids seems the most appropriate source of primary experimental
data for this purpose. In summary, the experiments on Gly–X–Gly tripeptides repre-
sents a complementary (and indispensible) source of data, and seem to indicate that
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the properties of sidechain groups in amino acids and polypeptides are comparable.

7.3. Oxidation-reduction buffers and the stability of amino acids in hydrothermal ex-
periments

The calorimetric measurements might be able to take advantage of oxidation-reduction
buffered systems, which have been shown to slow or eliminate the decomposition of5

amino acids at 200◦C and 50 bar (Andersson and Holm, 2000). The preservation of
alanine at high temperatures may also favored by ionic strengths of KCl up to 2 M
(Li et al., 2002). Thermodynamic predictions of the oxidation-reduction stabilization
of amino acids were reported by Amend and Helgeson (1997b), but the prediction of
stabilities of amino acids relative to their decarboxylation or other decomposition prod-10

ucts will require more detailed knowledge of the activity coefficients of all the species
involved.

7.4. Electrostatic interactions in unfolded proteins

Several experiments (Tan et al., 1995) and models relying on electrostatic calculations
(Elcock, 1999; Kundrotas and Karshikoff, 2002) more sophisticated than those pre-15

sented here indicate that the individual values of pK s of ionizable groups in unfolded
proteins may differ substantial from those of model compounds. Although it may be
less accurate than such calculations at 25◦C, the present method permits the estima-
tion of the titration curves of unfolded proteins at other temperatures and pressures.
We are not aware of other titration models with this provision. (Although, however, the20

results of our calculations as a function of temperature might be able to provide the null,
or baseline pK values which form the starting point of the electrostatic simulations.)

7.5. Extension of the group additivity database: [Cys−] and [H2O]

Although recent experimental work on the properties of thiols and polysulfides has ap-
peared (Schulte and Rogers, 2004; Plyasunova et al., 2005), we don’t yet have many25
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measurements on disulfides, at least not enough to easily retrieve their equations of
state parameters. Because disulfides are present not only in proteins, but also as a part
of the glutathione oxidation-reduction systems in cells, the experimental and theoretical
determination of their thermodynamic properties may play an important role in under-
standing cellular metabolism. This will aid not only the prediction of the thermodynamic5

properties of proteins, but also the interpretation oxidation-reduction conditions respon-
sible for the stability of disulfide-bonded proteins prevalent different biogeochemical
environments, including the intracellular environments of archaeal organisms (Mallick
et al., 2002).

8. Conclusions10

The group contributions to the standard molal thermodynamic properties at 25◦C and 1
bar and the revised HKF equations of state parameters of neutral and charged aqueous
sidechain and backbone groups generated above permit calculation of the thermody-
namic properties of unfolded proteins with any amino acid sequence in any ionization
state as a function of temperature and pressure. It has been demonstrated above that15

the availability of recent high- and low-temperature calorimetric and experimental data,
combined with a group additivity approach using multiple reference model compounds,
facilitates calculation with unprecedented accuracy of the the standard molal thermo-
dynamic properties of ionized amino acids, Gly–X–Gly tripeptides, polypeptides and
unfolded proteins.20

The standard molal thermodynamic properties generated in the present study can be
combined with computer codes that perform Gibbs free energy minimization for specific
bulk composition. These codes include GEMS-PSI (Karpov et al., 2001; Kulik, 2004),
HCh (Shvarov and Bastrakov, 1999) and visualization software capable of generating
two- and three-dimensional projections of metastable equilibrium phase relations in25

compositional hyperspace (Connolly, 1990). Such software facilitates a global inter-
pretation of the consequences of chemical reactions among proteins in biogeochem-
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ical systems. The consequences of evolutionary adaption of microbial communities
to changes in these systems include the differences in protein composition in ther-
mophilic and mesophilic organisms noted by Fukuchi and Nishikawa (2001) and Kreil
and Ouzounis (2001). Even on cellular length and time scales, there is mounting ev-
idence (Conour et al., 2004) that changes of protein composition during cell growth5

may be linked to oxidation-reduction gradients between different subcellular units (Al-
Habori, 1995). The physical chemical basis for such proteomic variation is amenable
to thermodynamic assessment of the biogeochemical constraints on protein speciation
using the properties, parameters and equations discussed above.

A. Summary of the revised HKF equations of state10

A.1. Thermodynamic conventions

According to convention, the standard molal free energy of the hydrogen ion in aqueous
solution is zero at all temperatures and pressures. For other charged aqueous, the
standard molal thermodynamic properties are given by

Ξ = Ξabs − ZΞabs
H+ , (A1)15

where Ξ and Ξabs stand for any given conventional and absolute standard molal prop-
erty, or equation of state coefficients of the aqueous species of interest, Ξabs

H+ denotes
the corresponding absolute standard molal property of the hydrogen ion, and Z rep-
resents the charge of the aqueous species of interest. It can be seen that ΞH+ = 0
at all temperatures and pressures. This convention establishes the scale by which the20

standard molal thermodynamic properties of all other species are reported. If needed,
calculations that take account of the biochemical standard state (defined at pH=7 and
usually at 37◦C) can be referenced to the standard state adopted here by taking ac-
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count of the appropriate equations. 2

The standard molal thermodynamic properties of aqueous species other than H2O
are for a hypothetical one molal solution referenced to infinite dilution at 25◦C and 1
bar. At other temperatures and pressures, apparent standard molal thermodynamic
enthalpies (∆H◦) and Gibbs free energies (∆G◦) are given by5

∆H◦ = ∆H◦
f +
(
H◦
P,T − HPr ,Tr

)
(A2)

and

∆G◦ = ∆G◦
f +
(
G◦
P,T − GPr ,Tr

)
, (A3)

where ∆H◦
f and ∆G◦

f represent the standard molal enthalpy and Gibbs free energy of
formation of the species from the elements at the reference temperature (Tr ) and pres-10

sure (Pr ) of 25◦C and 1 bar, respectively, and HP,T − HPr ,Tr and GP,T −GPr ,Tr denote the
differences between the standard molal enthalpy and Gibbs free energy, respectively,
at the temperature (T ) and pressure (P ) of interest, and those at Tr and Pr .

The values of ∆G◦
f , ∆H

◦
f and S◦

Pr ,Tr
are related by

∆G◦
f = ∆H◦

f − Tr
(
S◦
Pr ,Tr

− S◦
Pr ,Tr ,elements

)
, (A4)15

where S◦
Pr ,Tr ,elements represents the sum of the standard molal entropies of the elements

in the species of interest at 25◦C and 1 bar. The values of the entropies of the elements
at 25◦C and 1 bar are taken Cox et al. (1989).

Where needed, conversions between volumetric and energetic units are calculated
from the relation 1 cal = 41.84 cm3 bar.20

2See, for example, LaRowe, D. E. and Helgeson, H. C.: Biomolecules in hydrothermal sys-
tems: Calculation of the standard molal thermodynamic properties of nucleic-acid bases, nu-
cleosides, and nucleotides at elevated temperatures and pressures, Geochim. Cosmochim.
Acta, submitted.
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A.2. Solvation and non-solvation contributions

The revised HKF equations of state (Helgeson et al., 1981; Tanger and Helgeson,
1988) permit calculation of the standard molal thermodynamic properties of aqueous
species as continuous functions of temperature and pressure. They have been used
successfully used to represent experimental values of C◦

P , V ◦ and κ◦T of a wide variety of5

organic and inorganic aqueous species, including amino acids (Amend and Helgeson,
1997a; Marriott et al., 1998). The revised HKF equations of state are derived from the
separation of variables represented by

Ξ = ∆Ξn + ∆Ξs , (A5)

where Ξ stands for any standard molal thermodynamic property or equations of state10

parameter of an aqueous species, and ∆Ξn and ∆Ξs refer, respectively, to the nonsol-
vation and solvation contributions to that property or parameter.

The non-solvation contributions to C◦
P , V ◦, κ◦T and E ◦ of a given species can be

expressed as

∆C◦
P,n = c1 +

c2

(T −Θ)2
−
(

2T

(T −Θ)3

)(
a3 (P − Pr ) + a4 ln

(
Ψ+ P
Ψ+ Pr

))
, (A6)

15

∆V ◦
n = a1 +

a2

Ψ+ P
+
(
a3 +

a4

Ψ+ P

)(
1

T −Θ

)
, (A7)

−∆κ◦T,n =
(
a2 +

a4

T −Θ

)(
1

Ψ+ P

)2

, (A8)

and20

∆E ◦ = −
(
a3 +

a4

Ψ+ P

)(
1

T −Θ

)2

, (A9)
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where a1, a2, a3, a4, c1 and c2 represent temperature- and pressure-independent
coefficients for the species of interest, Θ and Ψ represent solvent parameters equal to
228 K and 2600 bars, respectively, T and P refer to the temperature and pressure of
interest, and Pr stands for the reference pressure of 1 bar. The solvation contributions
to C◦

P , V ◦, κ◦T and E ◦ in the revised HKF equations of state can be expressed as5

∆C◦
P,s = ωTX + 2TY

(
∂ω
∂T

)
P
− T
(

1
ε
− 1
)(

∂2ω
∂T 2

)
P

, (A10)

∆V ◦
s = −ωQ +

(
1
ε
− 1
)(

∂ω
∂P

)
T
, (A11)

∆κ◦T,s = ωN + 2Q
(
∂ω
∂P

)
T
−
(

1
ε
− 1
)(

∂2ω
∂P 2

)
T

, (A12)
10

and

∆E ◦ = −ωU , (A13)

where ω is an equation of state parameter for the species of interest and Q, N, X , Y
and U stand for the partial derivatives of the reciprocal dielectric constant of H2O (1/ε)
given by15

Q ≡ −
(
∂
(
1/ε
)

∂P

)
T

, (A14)

N ≡
(
∂Q
∂P

)
T
, (A15)

Y ≡ −
(
∂
(
1/ε
)

∂T

)
P

, (A16)
20
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X ≡
(
∂Y
∂T

)
P
, (A17)

and

U ≡
(
∂Q
∂T

)
P
. (A18)

The values of Q, X , Y , N and U are calculated in the present study using SUPCRT925

(Johnson et al., 1992), which relies on interpolation of the values given by Shock et al.
(1992) and Tanger and Helgeson (1988).

The solvation contributions in Eqs. (A10)–(A12) are represented by terms that con-
tain ω and its first- and second- partial derivatives with respect to temperature and
pressure. In the revised HKF equations of state, these partial derivates are set to zero10

for neutral species. In contrast, charged species generally are characterized by partial
derivatives of ω that are calculated from charge-dependent correlations (Tanger and
Helgeson, 1988). The use of group additivity for charged species, however, must be
able to extend to neutral zwitterions, for which the partial derivatives of ω with respect
to temperature and pressure are zero. This implies the partial derivatives of ω must be15

zero also for all charged groups, i.e.(
∂ω
∂T

)
P
=
(
∂ω
∂P

)
T
=

(
∂2ω
∂T 2

)
P

=

(
∂2ω
∂T 2

)
P

= 0 . (A19)

For neutral species, values of the partial derivatives of ω are set equal to zero. How-
ever, group additivity involves charged groups whose partial derivatives of ω do not
sum to zero. Nevertheless, comparative calculations indicate that the uncertainty intro-20

duced by this approximation is negligible in the context of the present study. Therefore,
the partial derivatives of ω for neutral species, as well charged groups are taken to be
zero.
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A.3. ∆G◦, ∆H◦ and S◦ at T and P

Taking into account Eq. (A19), the revised HKF equations of state for ∆G◦, ∆H◦ and S◦

can be written as

∆G◦ = ∆G◦
f − S

◦
Pr ,Tr

(T − Tr ) − c1[T ln
(
T
Tr

)
− T + Tr ]

− c2

{[(
1

T −Θ

)
−
(

1
Tr −Θ

)](
Θ − T
Θ

)
− T

Θ2
ln
[
Tr (T −Θ)

T (Tr −Θ)

]}
+ a1(P − Pr ) + a2 ln

(
Ψ+ P
Ψ+ Pr

)
+
(

1
T +Θ

)[
a3 (P − Pr ) + a4 ln

(
Ψ+ P
Ψ+ Pr

)]
+ω

[
YPr ,Tr (T − Tr ) +

1
ε
− 1
εPr ,Tr

]
, (A20)

∆H◦ = ∆H◦
f + c1 (T − Tr ) − c2

[(
1

T −Θ

)
−
(

1
Tr −Θ

)]
+ a1 (P − Pr ) + a2 ln

(
Ψ+ P
Ψ+ Pr

)
+

(
2T −Θ

(T −Θ)2

)[
a3 (P − Pr ) + a4 ln

(
Ψ+ P
Ψ+ Pr

)]

+ω

[
TY − TrYPr ,Tr +

(
1
ε
− 1
)
−
(

1
εPr ,Tr − 1

)]
, (A21)
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and

S◦ = S◦
Pr ,Tr

+ c1 ln
(
T
Tr

)
−
c2

Θ

{(
1

T −Θ

)
−
(

1
Tr −Θ

)
+

1
Θ

ln
[
Tr (T −Θ)

T (Tr −Θ)

]}
+
(

1
T −Θ

)2 [
a3 (P − Pr ) + a4 ln

(
Ψ+ P
Ψ+ Pr

)]
+ω

(
Y − YPr ,Tr

)
. (A22)

A.4. Regression equations

With the aid of the equations described below, values of the non-solvation revised HKF
parameters can be regressed from experimental and estimated values of C◦

P , V ◦ and κ◦S
as a function of temperature. At low pressure, the non-solvation contributions to each
of these properties can be expressed as linear functions of two non-solvation revised5

HKF parameters. The contribution by the pressure-dependent terms is minimal even
to a few hundred bars, so all the experimental data considered in the present study,
whether measured at ambient or elevated pressures, can be treated in the following
manner. For example, at P = Pr , Eq. (A6) reduces to

∆C◦
P,n = c1 +

c2

(T −Θ)2
, (A23)

10

which can be used to retrieve values of c1 and c2 from experimental values of C◦
P .

Similar regression calculations can be carried out for volumetric data by first defining
the parameters σ and ξ as

σ ≡ a1 +
a2

Ψ+ P
(A24)
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and

ξ ≡ a3 +
a4

Ψ+ P
. (A25)

Combining Eqs. (A24) and (A25) with Eq. (A7) yields

V ◦
n = σ +

ξ
T −Θ

, (A26)

which can be used to retrieve values of σ and ξ from experimental values of V ◦. The5

partial derivatives with respect to pressure of Eqs. (A24) and (A25) are given by(
∂σ
∂P

)
T
=

−a2

(Ψ+ P )2
(A27)

and(
∂ξ
∂P

)
T
=

−a4

(Ψ+ P )2
, (A28)

which can be combined with Eq. A8) to give10

−∆κ◦T,n =
(
∂σ
∂P

)
T
+
(
∂ξ
∂P

)
T

(
1

T −Θ

)
. (A29)

This expression can be used to derive values of a2 and a4 from experimental values of
κ◦T .

The non-solvation term can be included in the regression equations by taking ac-
count of Eqs. (A5) and (A19) along with Eqs. (A10) and (A23) for ∆C◦

P,n or Eqs. (A11)15

and (A26) for ∆V ◦
n . Thus, it is possible to write

C◦
P = c1 +

c2

(T −Θ)2
+ωTX (A30)
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and

V ◦ = σ +
ξ

T −Θ
−ωQ , (A31)

which can be used to retrieve values ofω where sufficient high-temperature experimen-
tal data are available. Because this is not possible for all of the amino acids, provisional
values of ω can be estimated from correlations among the solvation or hydration prop-5

erties of the species.

B. Calculation of updated values of the revised HKF parameters of organic
groups

The equations of state parameters given by Amend and Helgeson (1997b) for aqueous
organic groups were derived in part from those for aqueous alcohols and diols, and10

amines and diamines. Because homologous series were used in their analysis, the
non-solvation equations of state parameters of the [−CH2−] group were accurately
determined. However, little or no calorimetric data were available at the time for diols
and diamines at temperatures other than 25◦C. As a consequence, large uncertainties
are inherent in their group additivity predictions of the equations of state parameters15

of molecules such as n-alkanes and amino acids. Owing to the availability of more
recent experimentdal data reported in the literature, these uncertainties can now be
reduced considerably by revising the organic group contirbutions derived from diols
and diamines. This can be done by introducing a correction term, [di.corr], to modify
the group additivity contributions dervied from diols and diamines Doing so results in20

revised values of the parameters of the terminal groups used by Amend and Helgeson
(1997b), which are given in Table 10.

The values of [di.corr] for ∆G◦
f , ∆H◦

f and S◦
Pr ,Tr

are taken to be zero, because the
group additivity calculations using the unmodified group contributions to these proper-
ties given by Amend and Helgeson (1997b) accurately predict the properties of amino25

acids and many other organic compounds, including diols and diamines.
1555
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The group equations of state parameters given by Amend and Helgeson (1997b)
are indicated below by a superscript AH97b. In contrast, the symbols representing the
revised parameters carry no superscript. For propanol, no correction term is needed,
so the revised group contributions do not change the group additivity predictions. Con-
sequently, one can write Eq. (B1) where Ξ represents any equation of state parame-5

ter. For butane-1,4-diol, a correction term in the revised group additivity algorithm is
needed, but in calculating a trial value the revision should not alter the results of the
group additivity analysis. Therefore, one can write Eq. (B2) where Ξ[di.corr] denotes
the correction term. The value of this term can be calculated from amino acid and
Gly–X–Gly group additivity algorithms. For example, combining Eqs. (B1) and (B2),10

and taking Ξ[−CH2−] = ΞAH97b
[−CH2−], one obtains Eqs. (B3) and (B4). Generalizing Eq. (B4)

permits the revised contributions by the other terminal groups (excluding [−CH3]) to be
calculated from Eq. (B5) where [term] stands for [−COOH], [−CH2OH], [−CONH2] or
[−CH2NH2]. Because [−CHCH3−] is not a terminal group, its revised group contribu-
tions are given by Eq. (B6).15

The constraints given by the above equations ensure that the revised group contri-
butions are consistent not only with amino acid properties, but also with the properties
of the compounds from which they were originally derived. Taking into account these
equations, the value of Ξ[di.corr] for Ξ= C◦

P , c2, V ◦, ξ, a2 and a4, is selected such that the
revised group contributions minimize the uncertainty in the calculation of [AABB] and20

[GXGBB] from the reference amino acids and Gly–X–Gly tripeptides identified above.
For example, an initial value of C◦

P,[di.corr] = −22.5 yields the revised values of C◦
P,[−CH3]

and C◦
P,[−CH2OH] given in Table 10. These revised values yield C◦

P,[AABB] of −2.2 and

−0.7 cal mol−1 K−1 from Ala and Ser, respectively, which indicates a much smaller un-
certainty than that inherent in the original group contributions adopted by Amend and25

Helgeson (1997b).
The values of C◦

P , c2, V ◦ and ξ of [AABB] and [GXGBB] correspond to the values of
the intercepts of the regression lines on the plots of ΞAA and ΞGXG vs. Ξ[SC] depicted in
Fig. 10. For the most part, the symbols shown in this figure lie within a representative
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total group additivity uncertainty. In contrast, the symbols corresponding to C◦
P , c2, V ◦

and ξ of [−C6H5] and ξ of [−COOH] lie outside the representative uncertainties and are
not shown. Consequently, the revised contributions by these groups to the properties
are not calculated from Eq. (B5) but are computed from the respective properties of
the corresponding amino acids.5

Of the groups considered by Amend and Helgeson (1997b), only [−CH2]AH97b and
[−CH2OH]AH97b have values of a2 and a4 that were derived from non-amino acid com-
pounds. Therefore, the values of a2 and a4 of [di.corr] and [AABB] can be calculated
by solving the system of equations represented by Eq. (B7) using the values of a2 and
a4 of Ala and Ser given in Table 3.10

The values of V ◦ and ξ of [−CHCH3−] and those of a2 and a4 of [−CHCH3−],
[−COOH], [−CONH2], [−C6H5] and [−CH2NH2] can be computed by combining appro-
priate statements of Eqs. (1) and (2) with the equations of state parameters of amino
acids taken from Table 3 and those of [AABB], [−CH3] and [−CH2−] given in Table 10.
The corresponding properties of of [di.corr], as well as values of ω of all the groups can15

be calculated from the regression of the experimental high-temperature heat capacities
of mono- and di-alcohols and amines described below.

Experimental values of C◦
P at 280 bar and temperatures to ˜250◦C along the vapor-

liquid saturation curve of propanol, butane-1,4-diol, hexane-1,6-diol, propylamine,
butane-1,4-diamine and hexane-1,6-diamine have been reported in the literature (In-20

glese and Wood, 1996; Inglese et al., 1997). These high-temperature data are suitable
for determining the values of ω of [di.corr], [−CH3], [−CH2−], [−CH2OH], [−CH2NH2],
as well as those of c1 and c2 of [di.corr] by taking account the systems of equations
represented by Eqs. (B8) and (B9) for alcohols and amines, respectively. Iterative re-
gression of the high-temperature experimental data of the diols and diamines shown25

as symbols in Fig. 17 yields trial values of ω of [−CH2], which can be substituted into
Eqs. (B8) and (B9) to retrieve values of ω of the four remaining groups by iterative re-
gression to obtain the best fits of the data. Note in Fig. 17 that the the revised group
contributions to ω result in regression lines which are consistent within experimental
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uncertainty with both the high-temperature data for the mono- and di- alcohols and
amines. The dearth of such high-temperature data for these types of compounds at
the time prevented Amend and Helgeson (1997b) from performing a similar calculation.

C. Calculation of ∆G◦
f , ∆H

◦
f and S◦

Pr ,TR
of gaseous amino acids

Group additivity is used in the following manner to calculate the values of ∆G◦
f , ∆H

◦
f5

and S◦ of the gaseous amino acids – except for Ala, Gly and Pro – given in Table 2.
The properties of the sidechain groups in the amino acids can be calculated from the
group additivity algorithm represented by Eq. (1), where Ξ[SC] and Ξi stand for any
property or parameter of the sidechain group of interest and the i th group contribution,
respectively. The gaseous group contributions to ∆H◦

f and S◦ at 25◦C and 1 bar are10

summarized in Table 15 and are taken from Domalski and Hearing (1993), with the ex-
ception of a few groups for which the properties can be estimated using the strategies
described in the footnotes to the table. In particular, the properties of [AABB] given
in Table 15 are calculated using Eq. (2) and the experimental properties of Ala. For
gaseous amino acids, we adopt a modification of the additivity scheme developed by15

Benson and Buss (1958) and Domalski and Hearing (1993). Specific statements of
Eq. (1) are given in Table 14 for all of the gaseous amino acid sidechain groups ex-
cept [Gly] and [Pro]. These sidechain groups are not readily modeled by the additivity
scheme ([Gly] because it has no atoms other than H; [Pro] because it is bonded twice
to [AABB]). In addition, ∆H◦

f and S◦
Pr ,Tr

of Gly and Pro have been measured or can be20

calculated.

1558

http://www.biogeosciences.net/bgd.htm
http://www.biogeosciences.net/bgd/2/1515/bgd-2-1515_p.pdf
http://www.biogeosciences.net/bgd/2/1515/comments.php
http://www.copernicus.org/EGU/EGU.html


BGD
2, 1515–1615, 2005

Thermodynamic
properties of ionized

proteins

J. M. Dick et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

D. Group additivity calculation of the standard molal thermodynamic properties
of crystalline proteins as a function of temperature and pressure

The available high-temperature experimental values of C◦
P (up to 146.85◦C) of crys-

talline amino acids and proteins indicate that the trend of C◦
P of these compounds can

be modeled with a linear approximation. This is not the generally the case for crystalline5

compounds, nor is it true of proteins at temperatures below 100 K. Nevertheless, in the
context of the present study, the values of c in the Maier-Kelley equation can be taken
to be zero for the amino acids, polypeptides, proteins, and their consituent groups.

D.1. Revision of the Maier-Kelley parameters of crystalline Leu

Unlike C◦
P of the other amino acids, the heat capacity of Leu exhibits an upward cur-10

vature near the upper temperature limit of the experimental measurements (Hutchens
et al., 1963). This observation lead Helgeson et al. (1998) to fit the C◦

P of Leu with a
non-zero value of c using the Maier-Kelley equation, represented by

C◦
P = a + bT + cT−2 , (D1)

where a, b and c are temperature-independent coefficients for the species of interest.15

However, to maintin compatibility with the linear trend of C◦
P of crystalline proteins, and

because the observed curvature in C◦
P of Leu is characteristic of the anticipation of a

structural transition in the crystal, the Maier-Kelley parameters of Leu are reevaluated
in the present study with the aid of the regression plot shown in Fig. 18. It is evident
from this figure that the first two terms of Eq. (D1) accurately fit the experimental values20

of C◦
P of Leu below the onset of transition. The values of the Maier-Kelley parameters

of the remaining amino acids are taken from Helgeson et al. (1998).
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D.2. Calculation of the standard molal thermodynamic properties at 25 ◦C and 1
bar and the Maier-Kelley parameters of crystalline amino acid backbone and
sidechain groups

The values of ∆H◦
f , S

◦
Pr ,Tr

, V ◦ and C◦
P at 25◦C and 1 bar, and b of crystalline Ala, Val, Leu

and Ile taken from Helgeson et al. (1998) can combined with the group contributions by5

[−CH3], [−CH2−] and [> CH−] to these properties taken from Richard and Helgeson
(1998) to generate the regression plots shown in Fig. 19. The intercepts of the regres-
sion lines in this figure represent the contributions by the crystalline [AABB] to each of
these properties, the values of which are given in Table 16. The values of ∆G◦

f and a
of [AABB] given in Table 16 are generated using Eqs. (A4) or (D1), combined with the10

values of ∆H◦
f and S◦

Pr ,Tr
, or C◦

P , b and c, respectively, of [AABB].

D.3. Calculation of S◦
Pr ,Tr

of the crystalline protein backbone group

The group additivity calculation of ∆G◦
f , ∆H

◦
f and S◦

Pr ,Tr
of crystalline proteins, which

is required for the additive calculation of ∆H◦
sol of proteins, can be performed in the

manner described below. S◦
Pr ,Tr

of the crystalline protein backbone can be calculated15

from values of S◦
Pr ,Tr

reported by Hutchens et al. (1969) for crystalline insulin and chy-

motrypsinogen A (0.3144 and 0.3227 cal K−1 g−1, respectively) and by Mrevlishvili
(1986) for bovine albumin (0.3207 cal K−1 g−1). Converting these values to units of
cal K−1 mol−1 using masses of 5773, 25666, and 66433 g, respectively, for one mole
of the insulin monomer with one-half mole zinc, chymotrypsinogen A, and bovine al-20

bumin, and substituting the contributions to S◦ given in Table 16 from the crystalline
sidechain groups and amino acid backbone into Eq. 8, along with the numer of amino
acid residues of each protein, gives 11.18, 11.56, and 11.13 cal K−1 mol−1 for the val-
ues of S◦

Pr ,Tr
of the crystalline protein backbone in insulin, chymotrypsinogen A, and

bovine albumin, respectively. Because of the uncertain contribution by zinc to S◦
Pr ,Tr

25

of insulin, the mean of only the latter two values, 11.34, is shown in Table 16. It can
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be combined with S◦
Pr ,Tr

of [AABB] from the same table and that of H2O (16.71 cal

K−1 mol−1; calculated using SUPCRT92) to give ∆S◦ of the reaction represented by
[AABB] 
 [PBB] + H2O. This value, 8.83 cal K−1 mol−1, is about 0.2 to 0.5 cal K−1

mol−1 less than those calculated by Hutchens et al. (1969).

D.4. Calculation of ∆G◦
f and ∆H◦

f of the crystalline protein backbone group5

An experimental value of ∆H◦ of combustion of a crystalline protein of known se-
quence is available in the literature for only one protein (Tsuzuki et al., 1958). Although
measurements of ∆H◦

f of combustion of two other crystalline proteins have been re-
ported (Kienzle et al., 2001), they are referenced to proteins of ambiguous composi-
tion. Therefore, a provisional value of ∆H◦

f of [PBB], given in Table 16, is calculated10

from Eq. (8) using the enthalpy of combustion of INS PIG (5382.2 cal g−1) reported
by Tsuzuki et al., 1958 combined with the values of ∆H◦

f of the crystalline amino acid
backbone groups summarized above and ∆H◦

f of the gaseous combustion products.
Because only one reference model protein is included in this calculation, the estimated
uncertainty is 1 kcal mol−1, which is large compared to the uncertainty estimated for15

∆H◦
f of unfolded proteins. Reconnaisance calculations using ∆H◦ of combustion of

crystalline tri- and tetrapeptides (Chemical Rubber Company, 1975) yield values of of
∆H◦

f of [UPBB] that are 3 kcal mol−1 smaller than that calculated from insulin, which
differ from the value obtained from the calculation with INS PIG by more than the es-
timated uncertainty, supporting the notion that crystalline polypeptides of this length20

are perhaps poor candidates for modeling the thermodynamic properties of crystalline
proteins in the reference state adopted here.

A comparison of calculated and experimental values of ∆H◦
sol of four proteins is

shown in Fig. 20. The calculated values of ∆H◦
sol of the four proteins represented in

this figure are calculated from Eq. (8) and the respective group contributions to ∆H◦
f25

of nonionized unfolded and crystalline proteins taken from Tables 8 and 16. It can be
seen in Fig. 20 that, in general, the additive values of ∆H◦

sol deviate from the experimen-
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tal values taken from Souillac et al. (2002) by less than the experimental uncertainty,
which we estimate to be ±20% of the experimental value. This degree of uncertainty
is comparable to the differences between the experimental ∆H◦

sol of lyophilized and
non-lyophilized (as-is) samples reported by Souillac et al. (2002). It should perhaps
be noted, however, that the aqueous proteins in these experiments are most likely not5

nonionized unfolded proteins, but are instead both ionized and folded. The ionization
contribution can be approximated by taking account of Eqs. (26) and (23) for arbitrary
values of pH. The values of ∆H◦

sol of ionized unfolded proteins calculated in this man-
ner are represented by the position of the text-labeled symbols shown in Fig. 20 for
pHs of 3, 7 and 10. It is apparent from the trend of these values that the experimental10

data are in some cases more closely represented by ionized unfolded proteins present
in a solutions between pH 7 and 10. The question remains of what is the experimental
pH of the protein solution, which is not reported by Souillac et al. (2002). In the future,
it is evident that protein ionization may contribute substatially to the observed ∆H◦

sol . A
possible compensating factor may arise from the ionization state of the crystalline pro-15

teins. Because they contain at least some water, the crystalline proteins themselves
might be ionized, with perhaps similar enthalpic consequences as for aqueous pro-
teins. Such an interpretation would suggest a lessening the effects of ionization upon
dissolution of the proteins.

Another source of uncertainty in these comparative calculations is the difference be-20

tween the enthalpies of ionized unfolded proteins and those of ionized folded proteins.
Because the measurements of ∆H◦

sol probably involved folded proteins, and because
protein unfolding is generally an endothermic process, the calculated values of ∆H◦

sol

may be overestimated by 10 to 50 kcal mol−1. Consideration of folded proteins would
lead to shifts in the calculated values of ∆H◦

sol shown in Fig. 20 in the same direction25

as shown for the ionization effects.
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D.5. Calculation of V ◦
Pr ,Tr

of the crystalline protein backbone group

As with heat capacity, the volume of protein crystals changes considerably with the de-
gree of hydration. For example, consideration of the unit cell parameters of crystals of
RNP BOVIN with Protein Data Bank IDs 1BEL and 1C0C indicates that the unit cell vol-
ume decreases from 109 000 to 72 000 Å3 upon desiccation by exposure to CaSO4. It5

has also been noted that temperature (Kurinov and Harrison, 1995) and pressure (Vant
et al., 2002) may affect the volumetric properties of protein crystals. Nevertheless, it
might prove useful for geochemical calculations to adopt a reference state for calculat-
ing the contributions by the protein backbone group to V ◦

Pr ,Tr
of crystalline proteins.

D.6. Regression of the Maier-Kelley parameters of the crystalline protein backbone10

group

Figure 21 shows the results of an iterative fitting procedure to retrieve values of a and
b of [UPBB], which are reported in Table 16. The result is a close correspondence
between the calculated and experimental heat capacities as a function of temperature.
In terms of the reproduction of experimental data, our results are similar to those of15

Bakk’s 2002 calculations of the contributions by the vibrational modes of the molecules.
But the group additivity concept adopted here has the added advantage of using just
the amino acid sequence to predict the heat capacities of crystalline proteins.
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Table 1. Symbols and abbreviations used in the text.

Symbol(s) Definition

[SC] Abbreviation for any sidechain group.

[AABB], [AABB+], [AABB−] Abbreviations for the neutral zwitterionic, positively charged and negatively charged

amino acid backbone group.

[Ala], [Arg], [Arg+], . . . , [Val] 3-letter abbreviations, including formal charge, for sidechain groups.

[GXGBB] Abbreviation for the Gly–X–Gly backbone group, which is used here to refer to what

remains upon removal of the middle (X) sidechain group.

[UPBB], [PPBB] Abbreviations for the protein backbone group of crystalline proteins and the aque-

ous unfolded protein and polypeptide backbone groups, all of which share the for-

mula C2H2NO.

∆C◦
P,n, ∆V ◦

n , ∆κ◦T,n Standard molal non-solvation isobaric heat capacity, volume and isothermal com-

pressibility.

∆C◦
P,s, ∆V ◦

s , ∆κ◦T,s Standard molal solvation isobaric heat capacity, volume and isothermal compress-

ibility.

∆G◦, ∆H◦, S◦ Standard molal Gibbs free energy, enthalpy, and entropy at P and T .

∆G◦
f , ∆H

◦
f , S

◦
Pr ,Tr

Standard molal Gibbs free energy and enthalpy of formation, and third law entropy,

at Pr and Tr .
∆S◦

hyd Standard molal entropy of hydration.

∆G◦
ion Standard molal Gibbs free energy of ionization.

Ξ Any standard molal thermodynamic property or revised HKF parameter of a given

species.

AA Abbreviation for any amino acid.

A, C, D, . . . ,X, Y. Conventional 1-letter abbreviations for amino acids or sidechain groups.

Ala, Arg, Asn, . . . , Val Conventional 3-letter abbreviations for amino acids.

Ala, Arg, Arg+, Arg−, . . . 3-letter abbreviations for the amino acids, including formal charge.

GXG Abbreviation for any Gly–X–Gly tripeptide (X represents any sidechain group).

Pr , Tr Reference pressure (1 bar) and temperature (25◦C).
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Table 1. Continued.

Symbol(s) Definition

Psat Reference geothermal gradient of pressure, corresponding to Pr at temperatures <
100◦C and the saturation vapor pressure of pure H2O at temperatures ≥ 100◦C.

σ, ξ Volumetric non-solvation parameters in the revised HKF equations of state.

ω Solvation parameter in the revised HKF equations of state.

c1, c2, a1, a2, a3, a4 Caloric non-solvation parameters in the revised HKF equations of state.

n, ni Total number of sidechain groups (length) of a peptide; number of occurrences of

the i th sidechain or organic group in a group additivity equation.

pK Negative logarithm of the equilibrium constant of the deprotonation reaction of a

group or species.
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Table 2. ∆G◦
f , ∆H

◦
f and S◦

Pr ,Tr
of aqueous and gaseous amino acids. Values of ∆G◦

f , ∆H
◦
f and

S◦
Pr ,Tr

of aqueous amino acids in different ionization states are taken from Amend and Helge-
son (1997a). Unles otherwise noted, the values for gaseous amino acids are from additivity
calculations of ∆H◦

f and S◦
Pr ,Tr

, which are combined with S◦
Pr ,Tr

of the elements to give ∆G◦
f .

∆G◦
f ∆H◦

f S◦
Pr ,Tr

∆G◦
f ∆H◦

f S◦
Pr ,Tr

∆G◦
f ∆H◦

f S◦
Pr ,Tr

kcal mol−1 kcal mol−1 cal mol−1 K−1 kcal mol−1 kcal mol−1 cal mol−1 K−1 kcal mol−1 kcal mol−1 cal mol−1 K−1

Aqueous amino acids Aqueous amino acids Aqueous amino acids

Ala+ -92.01 -133.08 47.61 His2+ -58.89 -115.90 75.30 Trp+ -30.07 -97.25 72.00

Ala -88.81 -132.50 38.83 His+ -56.57 -115.20 69.86 Trp -26.82 -97.59 59.96

Ala− -75.36 -121.47 30.71 His -48.42 -108.20 66.00 Trp− -14.01 -85.66 57.00

His− -35.76 -97.70 58.76

Arg2+ -72.41 -155.86 87.60 Tyr+ -94.80 -157.45 70.45

Arg+ -69.93 -154.88 82.57 Ile+ -85.15 -151.58 60.37 Tyr -91.80 -157.74 59.41

Arg -57.36 -143.06 80.06 Ile -81.99 -151.60 49.70 Tyr− -79.38 -149.42 45.66

Arg− -40.34 -129.42 68.72 Ile− -68.68 -140.52 42.23 Tyr2− -65.65 -140.18 30.60

Asn+ -128.25 -183.44 64.66 Leu+ -87.38 -153.96 59.87 Val+ -88.51 -146.59 55.77

Asn -125.49 -182.70 57.88 Leu -84.20 -153.60 50.41 Val -85.33 -146.42 45.68

Asn− -114.47 -172.85 53.96 Leu− -70.90 -142.27 43.80 Val− -72.08 -138.36 28.27
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Table 2. Continued.

∆G◦
f ∆H◦

f S◦
Pr ,Tr

∆G◦
f ∆H◦

f S◦
Pr ,Tr

∆G◦
f ∆H◦

f S◦
Pr ,Tr

kcal mol−1 kcal mol−1 cal mol−1 K−1 kcal mol−1 kcal mol−1 cal mol−1 K−1 kcal mol−1 kcal mol−1 cal mol−1 K−1

Aqueous amino acids Aqueous amino acids Gaseous amino acids

Asp+ -175.23 -227.14 61.65 Lys2+ -95.86 -170.40 71.68

Asp -172.51 -226.34 55.22 Lys+ -92.89 -170.37 61.82 Alaa -71.91 -99.10 94.17

Asp− -167.17 -224.54 43.34 Lys -80.68 -159.33 57.91 Arg 2.14 -69.05 128.73

Asp2− -153.52 -209.10 49.34 Lys− -66.31 -146.34 53.27 Asn -98.81 -141.13 107.84

Asp -151.04 -187.80 112.47

Cys+ -82.66 -124.61 52.32 Met+ -123.23 -179.14 70.71 Cys -64.33 -90.08 106.65

Cys -80.33 -124.07 46.32 Met -120.12 -178.52 62.36 Gln -96.81 -146.06 117.20

Cys− -68.97 -117.08 31.66 Met− -107.55 -167.98 55.55 Glu -149.04 -192.73 121.83

Cys2− -54.26 -108.04 12.65 Glya -73.35 -93.30 85.84

Phe+ -52.95 -109.04 67.93 His -14.31 -62.60 104.53

Gln+ -129.24 -192.53 70.10 Phe -49.43 -108.90 56.60 Ile -66.10 -114.41 121.15

Gln -126.28 -191.86 62.41 Phe− -36.76 -98.01 50.63 Leu -66.10 -114.41 121.15

Gln− -113.82 -182.11 53.33 Lys -49.47 -105.95 132.25

Pro+ -76.22 -124.17 58.52 Met -59.13 -98.34 126.73

Glu+ -176.00 -234.99 70.53 Pro -73.56 -124.10 49.83 Phe -32.33 -71.95 123.16

Glu -173.05 -234.82 61.20 Pro− -59.05 -113.84 35.58 Proa -55.66 -87.52 112.48

Glu− -167.21 -234.15 43.86 Ser -103.12 -134.94 103.16

Glu2− -154.44 -217.28 57.61 Ser+ -126.90 -172.74 56.16 Thr -104.79 -143.42 112.92

Ser -123.92 -172.42 47.24 Trp 1.48 -51.13 120.88

Gly+ -94.16 -125.72 46.91 Ser− -111.36 -162.71 37.68 Tyr -69.87 -114.70 130.20

Gly -90.95 -124.78 39.29 Val -68.10 -109.48 111.79

Gly− -77.61 -114.19 30.07 Thr+ -122.69 -179.31 52.58

Thr -119.83 -178.94 44.23

Thr− -107.41 -169.11 35.54

a Values of ∆G◦
f of these amino acids are calculated from ∆G◦

hyd (Plyasunov and Shock, 2001) and ∆G◦
f of the cor-

responding aqueous amino acids. Values of ∆H◦
f are taken from Ngauv et al. (1977) and Sabbah and Laffitte (1978).

Values of S◦
Pr ,Tr

are calculated from from ∆G◦
f , ∆H

◦, and S◦
Pr ,Tr

of the elements.
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Table 3. Values and estimated uncertainties of revised HKF equations of state parameters of
amino acids.

Amino Acid ω × 10−5 c1 c2 × 10−4 a1 × 10 a2 × 10−2 a3 a4 × 10−4

cal mol−1 cal mol−1 K−1 cal mol−1 K cal mol−1 bar−1 cal mol−1 cal K mol−1 bar−1 cal mol−1 K

Ala 0.18 49.5 −7.00 14.90 1.74 7.16 −3.69
Arg 0.22 94.8 −12.50 28.83 8.21 7.20 −5.95
Arg+ 0.73 103.8 −9.60 31.72 0.22 5.46 −5.15
Arg− 2.30 141.9 −19.60 31.28 13.76 32.12 −9.94
Asn 0.21 56.5 −11.70 19.83 2.37 3.76 −4.81
Asp 2.47 56.3 −15.30 16.96 5.77 10.11 −6.37
Asp− 0.17 58.1 −11.90 18.96 3.05 −6.62 −2.23
Cys 0.15 59.8 −5.60 18.14 2.40 9.31 −4.97
Cys− 2.59 61.0 −9.50 14.44 5.08 12.24 −3.68
Glu 0.15 65.2 −10.00 22.30 4.23 6.55 −5.84
Glu− 2.65 47.6 −7.80 20.49 6.96 10.86 −7.02
Gln 0.18 68.6 −11.40 23.22 3.58 5.44 −5.23
Gly 0.23 28.5 −8.40 11.30 0.71 3.99 −3.04
His 0.27 81.6 −11.30 24.32 4.80 7.52 −6.05
His+ −0.50 78.0 −12.00 26.42 −4.06 −0.88 −3.07
Ile 0.09 99.7 −3.60 24.49 6.55 18.16 −7.76
Leu 0.09 102.7 −3.30 24.68 7.51 19.93 −8.37
Lys 0.07 89.5 −10.90 24.56 8.30 30.81 −9.53
Lys+ 1.21 95.2 −8.00 28.29 −1.51 4.47 −3.99
Lys− 2.67 133.7 −18.00 28.29 10.53 2.97 −7.61
Met 0.13 85.3 −6.60 24.95 6.90 13.59 −7.77
Phe 0.12 108.1 −6.50 28.27 8.80 19.33 −9.38
Pro 0.14 63.6 −9.50 19.39 4.87 11.88 −5.68
Ser 0.18 48.5 −9.40 15.69 0.73 3.87 −3.49
Thr 0.11 65.5 −7.10 18.94 2.83 8.87 −4.87
Trp 0.15 116.8 −7.80 33.91 9.21 14.78 −9.36
Tyr 0.09 106.2 −12.40 30.06 8.49 8.36 −8.58
Tyr− 2.78 109.0 −16.00 26.34 10.49 16.42 −7.59
Val 0.12 83.8 −4.30 21.35 4.48 14.58 −6.12

δAA ±0.1 ±1.0 ±1.20 ±0.1 ±0.48 ±0.47 ±0.81
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Table 4. Revised HKF equations of state parameters of Gly–X–Gly tripeptides and [GXGBB].

Tripeptide ωa × 10−5 cb
1 cc

2 × 10−4 σe ξf × 10−2

Ala −1.59 85.8 −15.80 130.7 −3.20
Arg+ −1.04 116.0 −20.00 192.0 −7.00
Asn −1.56 89.0 −18.00 157.9 −8.52
Asp −1.60 78.9 −13.80 147.9 −6.15
Cys −1.62 89.0 −11.80 147.3 −5.71
Glu −1.62 94.6 −15.50 164.5 −6.39
Gln −1.59 100.5 −18.80 167.3 −6.45
Gly −1.54 63.9 −16.60 112.2 −3.10
His −1.50 151.9 −36.10 178.8 −7.69
Ile −1.68 122.6 −6.80 188.4 −11.34
Leu −1.68 129.4 −9.60 184.8 −9.18
Lys+ −0.56 180.0 −36.00 189.0 −9.50
Met −1.64 105.9 −9.40 190.2 −12.43
Phe −1.65 128.4 −11.30 204.1 −10.90
Pro −1.63 91.5 −17.80 149.1 −5.93
Ser −1.59 77.5 −15.70 130.3 −3.14
Thr −1.66 99.3 −16.50 149.0 −5.45
Tyr −1.68 126.8 −17.20 203.9 −9.58
Val −1.65 111.8 −10.80 164.4 −6.08
δ ±0.10 ±1.0 ±1.20 ±1.2 ±1.50

[GXGBB] −1.54 52.6 −17.6 101.2 −1.59

a cal mol−1.
b cal mol−1 K−1.
c cal mol−1 K.
d 25◦C and 1 bar.
e cm3 mol−1.
f cm3 mol−1 K.
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Table 5. Reference model compound algorithms for estimating C◦
P and V ◦of amino acids as a

function of temperature.

Amino Acid

Property or

Parameter Reference Model Compound Algorithm

Asp− C◦
P Aspa + propanoateb − propanoic acidb

Cys C◦
P Sera + Gly–Cys–Glyc − Gly–Ser–Glyc

Cys− C◦
P , V ◦ Cys + propanoateb − propanoic acidb

Glu− C◦
P Glua + butanoateb − butanoic acidb

Lys− C◦
P , V ◦ Lys + n-butanamined − n-butanamine+ d

Tyr C◦
P Phee + Gly–Tyr–Glyf − Gly–Phe–Glyf

Tyr− C◦
P , V ◦ Tyr + propanoateb − propanoic acidb

a Hakin et al. (1994a).
b Shock (1995).
c Häckel et al. (1998).
d C◦

P : Makhatadze and Privalov (1990); V ◦: Makhatadze et al. (1990).
e Marriott et al. (1998).
f Häckel et al. (1999a).
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Table 6. Correlations among the properties of amino acids: summary of equations for calcu-
lating ω , a2 (cal mol−1) and a4 (cal mol−1 K) from ∆S◦

hyd (cal mol−1 K−1) and V ◦ (cm3 mol−1) at
25◦C and 1 bar.

Equation ZAA

6.1 ω × 10−5 = 0.49 + 0.0056 ×∆S◦
hyd 0

6.2 ω × 10−5 = 1.12 − 0.0196 ×∆S◦
hyd −1

6.3 ω × 10−5 = −0.17 − 0.0196 × ∆S◦
hyd +1

6.4 a2 × 10−2 = −4.80 + 0.105 × V ◦ 0
6.5 a2 × 10−2 = −1.25 + 0.105 × V ◦ −1
6.6 a2 × 10−2 = −13.50 + 0.105 × V ◦ +1
6.7 a4 × 10−4 = −2.78 − 0.721a2 × 10−2 0
6.8 a4 × 10−4 = −2.18 − 0.721a2 × 10−2 −1
6.9 a4 × 10−4 = −5.48 − 0.721a2 × 10−2 +1
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Table 7. C◦
P , V ◦ and κ◦T of amino acids and C◦

P and V ◦ of Gly–X–Gly tripeptides at 25◦C and
1 bar. Values are not given for tripeptides for which no calorimetric or volumetric data are
available in the literature.

GXG tripeptides Amino Acids

C◦
P

a V ◦b C◦
P

a V ◦b κ◦T
c

Ala 68.2 130.6 33.6 60.4 −23.46
Arg – – 67.4 123.7 −3.74
Arg+ 84.8 184.9 77.6 122.4 −50.88
Arg− – – 81.1 143.0 −24.08
Asn 66.6 150.1 30.8 77.3 −29.72
Asp 65.4 143.6 2.7 65.0 −3.39
Asp− – – 32.4 74.9 −43.62
Cys 79.8 143.7 47.1 73.3 −30.38
Cys− – – 18.1 60.3 −25.29
Glu 77.9 159.9 43.5 90.2 −26.73
Glu− – – 7.6 80.0 −43.68
Gln 76.8 162.5 43.8 93.6 −25.65
Gly 44.2 112.1 9.3 43.2 −24.56
His 92.2 172.0 56.2 99.3 −26.18
His+ – – 58.2 97.7 −56.95
Ile 124.1 176.9 91.6 105.8 −28.75
Leu 125.2 176.4 95.2 107.9 −28.19
Lys – – 66.7 108.8 −33.34
Lys+ 111.9 177.0 67.9 107.4 −55.85
Lys− – – 72.8 112.2 −26.94
Met 101.7 177.0 70.7 105.6 −27.05
Phe 120.5 193.1 93.8 122.2 −29.40
Pro 70.2 145.2 43.0 82.7 −21.27
Ser 60.1 130.2 27.8 60.7 −27.94
Thr 80.9 145.8 50.1 77.4 −26.46
Trp – – 99.6 143.6 −26.96
Tyr 107.2 194.9 80.2 124.7 −23.98
Tyr− – – 51.2 111.7 −28.09
Val 104.9 160.3 74.0 90.7 −27.37

δGXG ±4.4 ±3.6 δAA ±4.4 ±3.6 ±11.05

a cal mol−1 K−1.
b cm3 mol−1.
c cm3 bar−1 mol−1.
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Table 8. ∆G◦
f , ∆H

◦
f and S◦ of aqueous amino acid sidechain and backbone groups and organic

groups and ionized protein sidechain groups and unfolded protein backbone groups.

Group ∆G◦
f

a ∆H◦
f

a S◦b Group ∆G◦
f

a ∆H◦
f

a S◦b Group ∆G◦
f

a ∆H◦
f

a S◦b

Amino Acid Sidechain Groups Amino Acid Sidechain Groups Protein Backbone and Terminal Groups

[Ala] −3.94 −13.29 16.85 [Ser] −39.05 −53.21 25.26
[
AABB+] −89.94 −119.58 37.74

[Arg] 31.63 −20.73 54.74 [Thr] −34.96 −59.73 22.25
[
AABB−] −75.07 −108.69 24.38[

Arg+] 14.94 −35.67 60.59 [Trp] 58.05 21.62 37.98 [UPBB] −21.45 −45.22 1.62

[Asn] −40.61 −63.49 35.9 [Tyr] −6.92 −38.53 37.43

[Asp] −87.64 −107.13 33.24
[
Tyr−

]
5.50 −30.21 23.68 Organic Groupsd[

Asp−] −82.29 −105.33 21.36 [Val] −0.46 −27.21 23.7 [−CH2−] 2.24 −5.67 6.07

[Cys] 4.54 −4.86 24.34
[
−CH3

]
−2.19 −12.46 13.78[

Cys−
]

15.91 2.13 9.68 Amino Acid Backbone Groups
[
−CHCH3−

]
3.47 −12.48 11.71

[Gln] −41.40 −72.65 40.43 [AABB] −84.87 −119.21 21.98 [−CH2NH2] 7.04 −12.43 21.44

[Glu] −88.18 −115.61 39.22
[
AABB+] −88.00 −119.58 31.23 [−CH2OH] −41.53 −56.79 21.57[

Glu−] −82.34 −114.94 21.88
[
AABB−] −71.97 −108.69 13.97 [−CONH2] −46.55 −61.42 30.14

[Gly] −6.07 −5.57 17.31 [−COOH] −92.57 −104.38 26.41

[His] 36.46 11.01 44.02 Protein Sidechain Groupsc [
−C6H5

]
31.66 15.17 31.02[

His+
]

28.31 4.01 47.88
[
Arg+] 15.59 −35.67 58.41 [di.corr] 0.00 0.00 0.00

[Ile] 2.89 −32.39 27.72
[
Asp−] −82.06 −105.33 20.59

[Leu] 0.67 −34.39 28.43
[
Cys−

]
15.88 2.13 9.78 Representative Uncertainties

[Lys] 5.66 −37.65 39.29
[
Glu−] −82.04 −114.94 20.87 δAA ±0.50 ±0.50 ±0.50[

Lys+
]

−8.01 −51.16 39.84
[
His+

]
27.86 4.01 49.39 δ[SC] ±1.45 ±1.89 ±1.85

[Met] −35.25 −59.31 40.38
[
Lys+

]
−7.84 −51.16 39.24 δ[UPBB] ±1.45 ±2.82 ±7.82

[Phe] 35.44 10.31 34.62
[
Tyr−

]
6.18 −30.21 21.4

[Pro] 11.31 −4.89 27.85

a kcal mol−1.
b cal mol−1 K−1.
c The values of the properties of any neutral protein sidechain group are taken to be equal to those of the corresponding

amino acid sidechain group.
d Amend and Helgeson (1997b) (except [di.corr]).
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Table 9. ∆G◦
ion of ionization reactions and pK at 25◦C and 1 bar of sidechain and amino acid

backbone groups in amino acids and unfolded proteins.

Amino Acids Unfolded Proteins

Ionized group ∆G◦
ion

a,b pK b ∆G◦
ion

a,c pK c

[Asp−] 5.34 3.91 5.57 4.08

[Glu−] 5.84 4.28 6.14 4.50

[His+] −8.15 5.97 −8.60 6.30

[Lys+] −14.37 10.53 −14.19 10.40

[Arg+] −17.02 12.47 −16.37 12.00

[Cys−] 11.36 8.33 11.33 8.30

[Tyr−] 12.42 9.10 13.10 9.60

[AABB+] −2.70 1.98 −4.64 3.40

[AABB−] 13.33 9.77 10.23 7.50

δ ±0.50 ±0.37 ±0.26 ±0.19

a kcal mol−1.
b Values of ∆G◦

ion of the sidechain and backbone groups of amino acids are calculated from corresponding values of

∆G◦
f taken from Table 2. The uncertainty of ∆G◦

ion of amino acids is estimated to be equal to the uncertainty in the value

of ∆G◦
f . The values and uncertainty of pK of the corresponding deprotonation reactions of amino acids are calculated

from those of ∆G◦
ion and ∆G◦

ion = −2.303RT logK .
c pK s of reference model compounds for the deprotonation reactions of sidechain and amino acid backbone groups

in aqueous proteins are taken from Steinhardt and Reynolds (1969). The estimated uncertainty of pK a arising from

interactions in the unfolded protein is calculated by halving the range of values measured by Tollinger et al. (2003) for

deprotonation reactions of [Asp] and [Glu] in. Using the values and uncertainty of pK a of groups in unfolded proteins,

those of ∆G◦
ion are calculated from ∆G◦

ion = −2.303RT logK .
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Table 10. Revised HKF equations of state parameters and C◦
P , V ◦ and κ◦T at 25 ◦C and 1 bar of

aqueous sidechain, backbone and organic groups, and their estimated uncertainties.

Group ca
1 cb

2 × 10−4 ac
1 × 10 ad

2 × 10−2 ae
3 ab

4 × 10−4 ωd × 10−5 C◦a
P V ◦f κ◦T × 104

Amino Acid and Protein Sidechain Groups

[Ala] 27.9 3.60 5.40 3.60 4.39 -1.92 -0.05 35.7 26.7 5.81

[Arg] 73.2 -1.90 18.10 13.39 50.81 -10.09 -0.53 74.2 105.9 -1.18

[Arg+] 82.2 1.00 22.20 2.08 2.69 -3.38 0.50 79.7 88.7 -21.62

[Asn] 34.9 -1.10 10.30 4.23 0.99 -3.04 -0.02 32.8 43.6 -0.45

[Asp] 36.5 -1.30 9.50 4.91 -9.39 -0.46 -0.06 34.4 41.2 26.87

[Asp−] 34.7 -4.70 7.50 7.63 7.34 -4.60 2.24 4.7 31.3 -14.35

[Cys] 38.2 5.00 8.60 4.26 6.54 -3.20 -0.08 49.1 39.6 -1.12

[Cys−] 39.4 1.10 4.90 6.94 9.47 -1.91 2.36 20.1 26.4 3.97

[Gln] 47.0 -0.80 13.70 5.44 2.67 -3.46 -0.05 45.8 59.9 3.61

[Glu] 43.6 0.60 12.80 6.09 3.78 -4.07 -0.08 45.5 56.5 2.53

[Glu−] 26.0 2.80 11.00 8.82 8.09 -5.25 2.42 9.6 46.3 -14.41

[Gly] 6.9 2.20 1.80 2.57 1.22 -1.27 0.00 11.4 9.5 4.70

[His] 60.0 -0.70 14.80 6.66 4.75 -4.28 0.04 58.2 65.5 3.08

[His+] 56.4 -1.40 16.90 -2.20 -3.65 -1.30 0.28 51.0 61.2 -27.69

[Ile] 78.1 7.00 15.00 8.41 15.39 -5.99 -0.14 93.6 72.1 0.51

[Leu] 81.1 7.30 15.20 9.37 17.16 -6.60 -0.14 97.2 74.2 1.07

[Lys] 65.0 -0.30 15.10 10.16 21.66 -7.76 -0.16 65.8 75.1 -4.08

[Lys+] 73.6 2.60 19.10 0.35 1.70 -2.22 0.98 70.0 73.7 -26.59

[Met] 63.7 4.00 15.50 8.76 10.82 -6.00 -0.10 72.7 71.9 2.22

[Phe] 86.5 4.10 18.80 10.66 16.56 -7.61 -0.11 95.8 88.5 -0.13

[Pro] 42.0 1.10 9.90 6.73 9.11 -3.91 -0.09 45.1 49.0 7.99

[Ser] 26.9 1.20 6.20 2.59 1.10 -1.72 -0.05 29.8 27.0 1.32

[Thr] 43.9 3.50 9.40 4.69 6.10 -3.10 -0.12 52.1 43.7 2.80

[Trp] 95.2 2.80 24.40 11.07 12.01 -7.59 -0.08 101.6 109.9 2.30

[Tyr] 84.6 -1.80 20.60 10.35 5.59 -6.81 -0.14 82.2 90.9 5.28

[Tyr−] 87.4 -5.40 16.80 12.35 13.65 -5.82 2.55 53.2 77.9 1.18

[Val] 62.2 6.30 11.80 6.34 11.81 -4.35 -0.11 76.0 56.9 1.89
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Table 10. Continued.

Group ca
1 cb

2 × 10−4 ac
1 × 10 ad

2 × 10−2 ae
3 ab

4 × 10−4 ωd × 10−5 C◦a
P V ◦f κ◦T × 104

Amino Acid Backbone and Protein Backbone Groups

[AABB] 21.6 -10.6 0.947 -1.86 2.77 -1.77 0.23 -2.0 33.7 -29.26

[AABB+] 23.4 -7.2 1.15 -4.58 -13.96 2.37 -2.07 27.6 43.6 11.96

[AABB−] 68.7 -17.7 1.32 0.37 -18.69 0.15 2.83 6.9 37.2 -22.91

[UPBB] 11.2 -7.5 0.805 -3.75 -14.38 1.13 0.05 -4.5 21.3 -13.70

[PPBB] 21.2 -7.5 0.805 -3.75 -14.38 1.13 0.05 5.5 21.5 -13.70

Organic Groups

[−CH2−] 16.0 2.3 0.349 2.15 3.09 -1.70 0.00 20.7 16.0 -1.69

[−CH3] 31.5 1.9 0.555 3.60 3.96 -1.92 -0.05 35.8 26.9 5.81

[−CHCH3−] 30.1 4.4 0.62 3.62 10.12 -2.98 -0.09 39.9 31.2 -3.04

[−CH2NH2] 25.9 -2.5 0.698 0.00 -0.74 0.00 -0.19 22.6 29.4 1.78

[−CH2OH] 26.2 0.9 0.586 2.59 3.03 -1.72 -0.05 28.5 26.9 1.32

[−CONH2] 14.5 -4.9 0.702 1.14 -5.03 -0.06 -0.05 5.0 28.1 6.99

[−COOH] 12.9 -4.1 0.582 1.79 -2.40 -0.67 -0.08 5.3 24.4 5.91

[−C6H5] 70.4 1.8 1.533 8.51 13.47 -5.91 -0.11 75.1 72.5 1.56

[di.corr] 0.0 -6.7 0.006 -1.48 -0.05 2.32 -0.02 -13.5 3.4 11.49

Representative Uncertainties

δ[SC] 1.8 0.8 0.2 0.96 0.97 1.62 0.20 ±5.2 ±7.2 ±22.09

δ[UPBB] 1.2 1.6 0.4 0.50 0.93 1.00 0.20 ±6.3 ±5.9 ±13.78

a cal mol−1 K−1.
b cal mol−1 K.
c cal mol−1 bar−1.
d cal mol−1.
e cal K mol−1 bar−1.
f cm3 mol−1.
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Table 11. Protein abbreviations, identification, length, mass, formula and sources of C◦
P and V ◦

data as a function of temperature for the reference set of proteins.

Abbreviationa Protein Organism n Massb,c Formulab Propertyd

ALBU BOVIN Serum albumin Bos taurus 583 66433 C2934H4615N781O897S39 C◦
P,(cr)

AMYA PYRFU Alpha amylase Pyrococcus furiosus 648 76178 C3526H5325N885O976S14 C◦ e
P,(aq)

BPT1 BOVIN Pancreatic trypsin inhibitor Bos taurus 58 6518 C284H438N84O79S7 C◦ f
P,(aq)

CTRA BOVIN Chymotrypsinogen A Bos taurus 245 25665 C1127H1784N308O352S12 C◦
P,(cr)

CYC BOVIN Cytochrome C Bos taurus 104 11572 C517H825N143O150S4 C◦ g
P,(aq), V

◦ h
(aq)

IL1B HUMAN Interleukin 1-Beta Homo sapiens 153 17377 C773H1219N201O237S8 C◦ i
P,(cr)

INS BOVIN Insulin Bos taurus 51 5722 C254H381N65O74S6 C◦
P,(cr)

LACB BOVIN Beta-Lactoglobulin Bos taurus 162 18367 C821H1322N206O250S9 C◦
P,(cr)

LYC CHICK Lysozyme C Gallus gallus 129 14313 C613H959N193O185S10 C◦ g
P,(aq), V

◦ h
(aq), C

◦
P,(cr)

MYG HORSE Myoglobin Equus caballus 153 16952 C769H1212N210O218S2 C◦
P,(cr)

MYG PHYCA Myoglobin Physeter catodon 153 17200 C783H1240N216O216S2 C◦ g
P,(aq), V

◦ h
(aq)

OVAL CHICK Ovalbumin Gallus gallus 385 42750 C1901H2999N499O575S22 C◦
P,(cr)

RNBR BACAM Ribonuclease Bacillus amyloliquefaciens 110 12383 C555H847N153O170 C◦ j
P,(aq)

RNH ECOLI Ribonuclease H Escherichia coli 155 17597 C776H1215N227O228S7 C◦ k
P,(aq)

RNH THET8 Ribonuclease H Thermus themophilus 166 18728 C829H1297N253O231S7 C◦ k
P,(aq)

RNP BOVIN Pancreatic ribonuclease Bos taurus 124 13690 C575H909N171O193S12 C◦ g
P,(aq), V

◦ h
(aq), C

◦
P,(cr)

RNT1 ASPOR Ribonuclease T1 Aspergillus oryzae 104 11089 C479H687N127O171S4 C◦ l
P,(aq)

a Abbreviation used in the SWISS-PROT database (Boeckmann et al., 2003).
b For the neutral, disulfide-free and metal-free protein.
c g mol−1.
d Values of C◦

P,(cr) are taken from the sources indicated in the caption to Fig. 21.

Others are indicated by:
e Laderman et al. (1993).
f Makhatadze et al. (1993).
g Privalov and Makhatadze (1990).
h Makhatadze et al. (1990)
i Makhatadze et al. (1994).
j Griko et al. (1994).
k Guzman-Casado et al. (2003)
l Yu et al. (1994). 1589
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Table 12. Estimated uncertainties in the calculation of the standard molal thermodynamic
properties of amino acids and sidechain and unfolded protein backbone groups at 100 and
200◦C and PSAT and at 200 and 300◦C at 5000 bar. Estimated uncertainties at 25◦C and 1 bar
are given in Tables 2 and 7 for AA and Tables 8 and 10 for [SC] and [UPBB].

100◦C, PSAT 200◦C, PSAT

Property AA [SC] [UPBB] AA [SC] [UPBB]

∆G◦a 0.57 1.63 2.08 0.74 2.00 3.05

∆H◦a 0.75 2.26 3.20 1.13 2.96 3.87

S◦b 1.26 2.95 8.97 2.15 4.59 10.52

C◦
P

b 3.0 5.0 4.8 5.3 10.1 9.6

V ◦c 2.7 5.4 4.8 3.3 6.6 6.3

κ◦T
d 8.72 17.43 11.94 21.79 43.58 39.17

200◦C, 5000 bar 300◦C, 5000 bar

Property AA [SC] [UPBB] AA [SC] [UPBB]

∆G◦a 0.90 2.33 3.40 1.19 2.94 4.60

∆H◦a 1.07 2.84 3.71 1.10 2.85 3.70

S◦b 1.74 3.78 9.59 2.04 4.30 10.07

C◦
P

b 1.9 3.3 2.8 2.3 4.3 3.8

V ◦c 2.1 4.1 3.8 2.0 4.1 3.9

κ◦T
d 5.56 11.13 6.72 5.62 11.24 7.29

a kcal mol−1.
b cal mol−1 K−1.
c cm3 mol−1.
d 10−4 cm−3 bar−1 mol−1.
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Table 13. Group additivity equations for calculating the parameters of [di.corr] and revising the
parameters of the organic groups given by Amend and Helgeson (1997b).

Ξ[−CH3 ] + Ξ[−CH2−] + Ξ[−COOH] = ΞAH97b
[−CH3] + ΞAH97b

[−CH2−] + ΞAH97b
[−COOH] (B1)

2Ξ[−COOH] + 2Ξ[−CH2−] + Ξ[di.corr] = 2ΞAH97b
[−COOH] + 2ΞAH97b

[−CH2−] (B2)

Ξ[−CH3 ] = ΞAH97b
[−CH3 ] +

1
2Ξ[di.corr] (B3)

Ξ[−COOH] = ΞAH97b
[−COOH] −

1
2Ξ[di.corr] (B4)

Ξ[term] = ΞAH97b
[term] −

1
2Ξ[di.corr] (B5)

Ξ[−CHCH3−] = ΞAH97b
[−CHCH3−] (B6)

Ξ[AABB] = ΞAla −
(
ΞAH97b

[−CH3 ]
+

1
2
Ξ[di.corr]

)
Ξ[AABB] = ΞSer −

(
ΞAH97b

[−CH2OH]
− 1

2
Ξ[di.corr]

)

(B7)

Ξpropanol = Ξ[−CH3] + Ξ[−CH2−] + Ξ[−CH2OH]

Ξbutane−1,4−diol = 2Ξ[−CH2−] + 2Ξ[−CH2OH] + Ξ[di.corr]

Ξhexane−1,6−diol = 4Ξ[−CH2−] + 2Ξ[−CH2OH] + Ξ[di.corr]

(B8)

Ξpropylamine = Ξ[−CH3 ] + Ξ[−CH2−] + Ξ[−CH2NH2]

Ξbutane−1,4−diamine = 2Ξ[−CH2−] + 2Ξ[−CH2NH2 ] + Ξ[di.corr]

Ξhexane−1,6−diamine = 4Ξ[−CH2−] + 2Ξ[−CH2NH2 ] + Ξ[di.corr]

(B9)
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Table 14. Group additivity algorithms for calculating ∆H◦
f and S◦

Pr ,Tr
of gaseous amino acid

sidechains.

Group Group additivity algorithm

[Ala]
[
C − (H)3 (C)

]
[Arg] 2[C-(H)2(C)2] + [C-(H)2(C)(N)]+[N-(H)(C)2] + [C-(N)2(NA)] + [N-(H)2(C)]second,amino acids +

[NA-(H)(C)]

[Asn] [C-(H)2(CO)(C)] + [CO-(C)(N)] + [N-(H)2(CO)]amides, ureas

[Asp] [C-(H)2(CO)(C)] + [CO-(C)(O)] + [O-(H)(CO)]

[Cys] [C-(H)2(C)(S)] + [S-(C)(H)]

[Gln] [C-(H)2(C)2] + [C-(H)2(CO)(C)] + [CO-(C)(N)] + [N-(H)2(CO)]amides, ureas

[Glu] [C-(H)2(C)2] + [C-(H)2(CO)(C)] + [CO-(C)(O)] + [O-(H)(CO)]

[His] S◦: [C-(H)2(C)(CB)] + [CB-(N)(CB)(C)] + [CB-(H)(CB)(NA)] + [NI-(CB)] + [CB-(H)(NI)(N)] +

[N-(H)(CB)2]

∆H◦
f : [2 − ethylimidazole] − [C-(H)3(C)]

[Ile] [C-(H)2(C)2] + 2[C-(H)3(C)] + [C-(H)(C)3]

[Leu] [C-(H)2(C)2] + 2[C-(H)3(C)] + [C-(H)(C)3]

[Lys] 3[C-(H)2(C)2] + [C-(H)2(C)(N)] + [N-(H)2(C)]second

[Met] [C-(H)2(C)2] + [C-(H)2(C)(S)]+[S-(C)2]+[C-(H)3(S)]

[Phe] [C-(H)2(C)(CB)] + [CB-(C)(CB)2] + 5[CB-(H)(CB)2]

[Ser] [C-(H)2(O)(C)] + [O-(H)(C)]

[Thr] [C-(H)(O)(C)2]alcohols,peroxides + [C-(H)3(C)] + [O-(H)(C)]

[Trp] [C-(H)2(C)(CB)] + [CB-(C)(CB)2] + [CB-(H)(CB)(N)] + [N-(H)(CB)2] + [CB-(N)(CB)2] +

4[CB-(H)(CB)2] + [CBF-(CBF)(CB)2]

[Tyr] [C-(H)2(C)(CB)] + [CB-(C)(CB)2] + 4[CB-(H)(CB)2] + [CB-(O)(CB)2] + [O-(H)(CB)]

[Val] 2[C-(H)3(C)] + [C-(H)(C)3]
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Table 15. Group contributions to ∆H◦
f and S◦ of gaseous amino acids.a

∆H◦
f S◦

Pr ,Tr
∆H◦

f S◦
Pr ,Tr

∆H◦
f S◦

Pr ,Tr

kcal mol−1 cal mol−1 K−1 kcal mol−1 cal mol−1 K−1 kcal mol−1 cal mol−1 K−1

Groups Groups Groups

[AABB]c -89.00 63.74 [C − (H) (O) (C)2]b1 -6.24 -10.29 [CO–(C)(N)] -31.85 13.55

[C − (H)3 (C)] -10.10 30.43 [C − (H)2 (O) (C)] -7.86 10.38 [N − (H)2 (CO)]b3 -15.06 21.09

[C − (H)2 (C)2 ] -4.93 9.36 [C − (H)2 (C) (N)] -6.76 10.10 [C − (H)3 (S)] -10.10 30.43

[C − (H) (C)3] -0.28 -12.81 [CB − (H) (NI) (N)]d -6.76 10.10 [C − (H)2 (C) (S)] -5.54 10.01

[CB − (H) (CB)2 ] 3.30 11.55 [N − (H)2 (C)]b2 4.60 30.33 [S − (H)(C)] 4.46 32.90

[CB − (C) (CB)2 ] 5.65 -8.51 [N-(H)(C)2 ] 16.14 8.12 [S − (C)2 ] 11.23 13.19

[C − (H)2 (C) (CB)] -5.10 10.18 [NA − (H)(C)]e 16.14 8.12

[CBF − (CBF)(CB)2 ] 4.80 0.00 [N − (H)(CB)2 ]h 19.97 8.12 Model compounds

[CO − (C) (O)] -32.80 14.96 [NI − (CB)] 16.49 11.24 2-ethylimidazolej 16.30 —

[O − (H)(CO)] -60.78 24.31 [CB − (N) (CB)2 ] -0.31 -10.40 pyrrolek 25.88 —

[O − (H)(CB)] -38.31 29.04 [CB − (N) (CB) (C)]f -0.31 -10.40

[O − (H)(C)] -38.08 29.04 [C − (N)2 (NA)f] -0.31 -10.40 Estimated Uncertaintyj

[CB − (O)(CB)2] -1.14 -10.45 [CB − (H) (CB) (NA)]g 3.30 11.55 δ 0.60 0.50

[C − (H)2 (CO) (C)] -5.22 9.46 [CB − (H) (CB) (N)]i -0.34 11.55

a Unless otherwise noted, values of ∆H◦
f and S◦

Pr ,Tr
are from Domalski and Hearing (1993). Specific designations are represented by b1 (alcohols,

peroxides), b2 (second, amino acids) and b3 (amides, ureas). c ∆H◦
f of gaseous Ala is taken from Ngauv et al. (1977). S◦

Pr ,Tr
of Ala is calculated from

∆H◦
f , the entropies of the elements, and ∆G◦

f taken from Plyasunov and Shock (2001). d –g ∆H◦
f and S◦

Pr ,Tr
of the indicated groups are made equivalent to

those of (d )
[
C − (H)2 (C) (N)

]
, (e)

[
N − (H) (C)2

]
, (f )

[
CB − (N) (CB)2

]
or (g)

[
CB − (H) (CB)2

]
. h S◦

[N−(H)(CB)2] = S
◦
[N−(H)(C)2 ].

i ∆H◦
f ,[CB−(H)(CB)(N)] =

1
2 ∆H

◦
f ,pyrrole − ∆H◦

f ,
[
CB−(H)(CB)2

] − 1
2 ∆H

◦
f ,[N−(H)(CB)2 ]; S

◦
[CB−(H)(CB)(N)] = S

◦[
CB−(H)(CB)2

]. j Jimenez et al. (1992). k Scott et al. (1967). l These values

are Benson and Buss’ (1958) estimates of the uncertainty in the additive prediction of ∆H◦
f and S◦

Pr ,Tr
of gaseous species.
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Table 16. ∆G◦
f , ∆H◦

f , S
◦
Pr ,Tr

, Maier-Kelley parameters and C◦
P and V ◦ at 25◦C and 1 bar of

sidechain and backbone groups of crystalline amino acids and proteins. Values of the Maier-
Kelley parameter c are taken to be zero.

Group ∆G◦
f

a ∆H◦
f

a S◦
Pr ,Tr

b ab bc × 103 C◦
P

b V ◦d

[Ala] −1.22 −12.12 11.66 1.9 42.1 14.4 26.7

[Arg] 29.88 −26.67 40.68 1.5 132.3 41.0 105.9

[Asn] −39.25 −66.12 22.49 3.0 68.9 23.6 43.6

[Asp] −87.25 −110.26 21.44 3.1 64.4 22.3 41.2

[Cys] 5.97 −4.32 21.38 −2.8 89.7 24.0 39.6

[Gln] −39.79 −74.92 27.4 4.4 83.3 29.2 59.9

[Glu] −87.49 −118.94 25.76 3.1 80.1 27.0 59.9

[Gly] −3.01 −6.02 5.52 −0.4 31.1 8.9 9.5

[His] 38.05 10.88 38.24 0.4 126.6 38.2 65.5

[Ile] 4.33 −30.12 30.49 3.3 90.2 30.2 72.1

[Leu] 1.96 −32.22 31.4 2.6 97.0 31.5 74.2

[Lys] 4.62 −39.83 35.46 −0.6 121.4 35.6 75.1

[Met] −33.48 −58.82 36.1 5.4 90.4 32.3 71.9

[Phe] 36.74 10.78 31.84 −1.8 119.2 33.7 88.5

[Pro] 15.23 −3.32 19.99 −0.3 72.7 21.4 49.0

[Ser] −35.96 −52.75 16.43 3.1 48.7 17.6 27.0

[Thr] −32.72 −58.98 17.28 0.0 76.7 22.9 43.7

[Trp] 58.78 23.18 40.78 −1.7 147 42.1 109.9

[Tyr] −8.11 −41.36 31.93 −1.7 129.6 37.0 0.0

[Val] 1.48 −25.32 23.53 3.6 73.8 25.6 56.9

[AABB] −87.22 −122.38 19.22 3.9 36.5 14.8 33.7

[PBB] −22.33 −43.22 11.34 1.3 25.0 8.8 —

δ[SC] ±0.50 ±0.50 ±0.10 ±2.0 ±5.0 ±2.0 ±3.0

δ[PBB] ±1.00 ±1.00 ±0.12 ±2.0 ±5.0 ±2.0 ±10.0

a kcal mol−1. b cal mol−1 K−1. c cal mol−1 K−2. d cm3 mol−1.
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Fig. 1. pK s of sidechain and backbone groups in amino acids as a function of temperature
at Psat, calculated at 25◦C using values of the standard molal thermodynamic properties taken
from Table 8 and at other temperatures using these values and the values of the equations of
state parameters taken from Table 10. Thin curves represent equal activity of neutral and ion-
ized forms of the sidechain groups, which are identified by the one-letter abbreviations shown
beneath the curves. The bold curves represent equal activities of either [AABB+] or [AABB−]
relative to [AABB], and therefore delimit the stability field of [AABB], represented by grey shad-
ing. Charges of the ionized groups are indicated by “+” and “−” symbols.
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Fig. 2. ∆C◦
P,n of amino acids as a function of 1/ (T −Θ)2. The intercepts and slopes of the

regression lines correspond to c1 and c2, respectively, in the revised HKF equations of state.
Values of ∆C◦

P,n are calculated from experimental values of C◦
P taken from (©) Hakin et al.

(1994a) (Ala, Gly, Ser, Thr), Hakin et al. (1994b) (Asp, Glu), Duke et al. (1940) (Ile, Leu, Val),
Hakin et al. (1995) (Asn, Gln), Hakin et al. (1997a) (Arg, Met, Pro), Marriott et al. (1998) (His,
Phe, Trp, Tyr), Hakin and Hedwid (2001b) (Lys+, Arg+); (2) Price et al. (2003a) (His), Jardine
et al. (2001) (His+), Price et al. (2003b) (Val); (4) Clarke et al. (2000); (5) Downes et al.
(2001). Values of C◦

P estimated in the present study are represented by open diamonds (♦).
The diameters of the symbols represent an estimated average uncertainty of ±2.5% in the
experimental value of C◦

P . The data at 25◦ and 1 bar given by Jolicoeur et al. (1986), Spink and
Wädso (1969) and DiPaola and Belleau (1978) are not shown.
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Fig. 3. ∆V ◦
n of amino acids as a function of 1/ (T −Θ). The intercepts and slopes of the regres-

sion lines correspond to σ and ξ, respectively, in the revised HKF equations of state. Values
of ∆V ◦

n are calculated from experimental values of V ◦ from (©) Hakin et al. (1994a) (Ala, Gly,
Ser, Thr), Hakin et al. (1994b) (Asp, Glu), Duke et al. (1940) (Ile, Leu, Val), Hakin et al. (1995)
(Asn, Gln), Hakin et al. (1997a) (Arg, Met, Pro), Marriott et al. (1998) (His, Phe, Trp, Tyr), Hakin
and Hedwid (2001b) (Lys+, Arg+); (2) Price et al. (2003a) (His), Jardine et al. (2001) (His+

and His−), Sorenson et al. (2003) (Pro), Price et al. (2003b) (Val); (4) Clarke and Tremaine
(1999); (5) Yasuda et al. (1998); (×) Mizuguchi et al. (1997). Not shown are low-temperature
data given by Marriott et al. (2001), Kharakoz (1998), Kikuchi et al. (1995), Banipal and Kapoor
(1999), Jolicoeur et al. (1986), Millero et al. (1998), Ahluwalia et al. (1977). The diameters of
the symbols represent an estimated average uncertainty of ±1% in the experimental value of
V ◦. Values of C◦

P estimated in the present study are represented by open diamonds (3).
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Fig. 4. ∆κ◦T,n of amino acids as a function of 1/ (T −Θ). The slopes and intercepts of the
regression lines correspond to −

(
∂σ/∂P

)
T and −

(
∂ξ/∂P

)
T , respectively, in the revised HKF

equations of state. Values of ∆κ◦T,n are calculated from experimental values of κ◦S from (©)
Kikuchi et al., 1995; (2) Kharakoz, 1991; (4) Mizuguchi et al., 1997; (5) Yasuda et al., 1998;
and (×) Millero et al., 1998. The diameters of the symbols represent an estimated average
uncertainty of ±2.5% in the experimental value of κ◦T .
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Fig. 7. ∆C◦
P,n as a function of 1/ (T −Θ)2 for Gly–X–Gly tripeptides. The intercepts and slopes

of the regression lines correspond to c1 and c2, respectively, in the revised HKF equations
of state. Values of ∆C◦

P,n are calculated from experimental values of C◦
P from (©) (Häckel

et al., 1999a, 1998; Vogl et al., 1995), (2) Downes and Hedwig, 1995 and (4) Makhatadze and
Privalov, 1990. The diameters of the symbols represent an estimated average uncertainty of
±2.5% in the experimental value of C◦

P .
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Fig. 8. ∆V ◦
n as a function of 1/ (T −Θ) for Gly–X–Gly tripeptides. The regression lines have

intercepts and slopes that correspond, respectively, to σ and ξ in the revised HKF equations
of state. Values of ∆V ◦

n are calculated from experimental values of V ◦ from (©) (Häckel et al.,
1999a, 1998; Vogl et al., 1995). The diameters of the symbols represent an estimated average
uncertainty of ±2.5% in the experimental value of C◦

P .
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Fig. 10. C◦
P , V ◦, c2 and ξ of amino acids and Gly–X–Gly tripeptides as a function of the

corresponding properties of reference model sidechain groups. Values of C◦
P , V ◦, c2 and ξ of

AA and GXG are taken from Tables 3, 4 and 7, except those of ξ of AA which are calculated
using Eq. (A25) and values of a3 and a4 taken from Table 3. Values of C◦

P , V ◦, c2 and ξ
of the sidechain groups, corresponding to the positions of the droplines, are calculated using
appropriate statements of Eq. (1) and the group contributions given in Table 10. The regression
lines have unit slope and intercepts that correspond to C◦

P , V ◦, c2 and ξ of [AABB] and [GXGBB].
The lengths of the error bars indicate the uncertainty of the group additivity calculation of the
properties of AA and GXGBB, estimated from the scatter of the symbols around the regression
lines.
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Fig. 11. ∆C◦
P,n as a function of 1/ (T −Θ)2 of the aqueous unfolded protein backbone and

polypeptide backbone. The intercepts and slopes of the regression lines correspond to c1 and
c2, respectively in Eq. (A23), and are consistent with the group contributions by [UPBB] (left)
or [PPBB] (right) given in Table (10). The symbols represent values of ∆C◦

P,n calculated using
Eqs. (A5), (A10) and (8), the group contributions by protein sidechains generated from amino
acid reference model compounds (upper ; Table 10) or Gly–X–Gly reference model compounds
(lower ), and experimental values of C◦

P of the unfolded proteins CYC BOVIN (3), MYG PHYCA
(.), LYC CHICK (O), RNP BOVIN (/), BPT1 BOVIN (2), IL1B HUMAN (M), RNBR BACAM (©)
and RNT1 ASPOR (×), and of the polypeptides GGLGG (©) and GGSAG (M). The reported
values of C◦

P of unfolded proteins at 125◦C are derived using estimated values of V ◦ at this
temperature.
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Fig. 12. ∆V ◦
n as a function of 1/ (T −Θ) of the aqueous unfolded protein backbone and polypep-

tide backbone. The intercepts and slopes of the regression lines correspond to σ and ξ, re-
spectively in Eq. (A7), and are consistent with the contributions by [UPBB] (left) or [PPBB]
(right) given in Table (10). The symbols represent values of ∆V ◦

n calculated using Eqs. (A5),
(A11) and (8), the group contributions by protein sidechains generated from amino acid model
compounds (upper ; Table 10) or Gly–X–Gly model compounds (lower ), and experimental val-
ues of C◦

p of the unfolded proteins CYC BOVIN (©), LYC CHICK (M), MYG PHYCA (2), and
RNP BOVIN (O), and of the polypeptides GGLGG (©) and GGSAG (M). The reported values
of V ◦ of unfolded proteins at 125◦C are generated from group additivity.
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Fig. 13. Propagated amino acid (AA) and sidechain group ([SC]) uncertainties in C◦
P (top) and

∆G◦ (bottom) as a function of temperature at Psat. Calculated total uncertainties are converted
to percentages of the average value of the property of the 20 neutral amino acids. Solid curves
represent total propagated uncertainties; the dashed curves represent either the contributions
by δω to δ∆C◦

P or the contributions by δ∆G◦
f and δS◦ to δ∆G◦.
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Fig. 14. Calculated and experimental values of the mean net charge (Z ; left) and calculated
values of the standard molal Gibbs free energy (∆G◦; right) of unfolded RNAS1 BOVIN (upper ),
LYC CHICK (middle) and NUC STAAU (lower ) as a function of pH and temperature. Open
circles represent values of Z reported from titration experiments in 6.0 M GuHCL at 25◦C
(Nozaki and Tanford, 1967b; Roxby and Tanford, 1971; Whitten and Garcı́a-Moreno E., 2000),
and solid curves represent values of Z and ∆G◦ calculated using Eqs. (23) and (24) at 25, 100
and 150◦C. Dashed curves – not shown for NUC STAAU – represent the exclusion of the [Cys]
ionization reaction in the calculation of Z and ∆G◦ at 25◦C.
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Fig. 15. C◦
P to temperatures > 100 ◦C at Psat of heat-denatured thermophilic proteins. Experi-

mental values taken from Figure 6 of Guzman-Casado et al. (2003) are shown for ribonuclease
H from T. thermophilus (RNH THET8) at pHs of 4.0–5.0 (©) and for ribonuclease H from E. coli
(RNH ECOLI) at pHs of 2.0–3.5 (©). Experimental values of C◦

P of unfolded AMYA PYRFU (N)
are taken from the curve for pH=10.3 in Fig. 4 of Laderman et al. (1993), from 122 to 137◦C. At
temperatures greater than 125◦C, the pH=10.3 curve in Fig. 4 of Laderman et al. (1993) coin-
cides with those for pH=7.0 and pH=8.0. Values predicted in the present study for nonionized
unfolded proteins are shown by the dashed curves.
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Fig. 16. Comparison of experimental and calculated values of ∆C◦
P,r (top) and pK (bottom)

as a function of temperature at PSAT of the reaction represented by [COOH] 
 [COO−] +
H+, corresponding to [AABB+] 
 [AABB] + H+ for amino acids with nonionizable sidechain
groups. The curve in the top panel represent values of ∆C◦

P,r of the latter reaction calculated
from Eq. (A30) and the values of c1, c2 and ω of [AABB] and [AABB+] taken from Table 10.
Experimental values are taken from Wang et al. (1996) for Ala (©) and Gly (2), from Price
et al. (2003b) for Val (4), and from Sorenson et al. (2003) for Pro (5). Experimental values of
∆C◦

P,r of [COOH] 
 [COO−] + H+ are calculated using the revised HKF parameters taken from
Shock (1995) for acetic (+), propanoic (×) and butanoic (∗) acids and their ionized counterparts.
Experimental values of pK, shown in the lower panel, are represented by circles with a one-
letter amino acid label, and were measured at 45 bar by Clarke et al. (2005). These authors’
estimated experimental errors for Gly are represented by the error bars shown in the plot. (For
clarity, the error bars for Ala and Pro are omitted. Clarke et al. (2005) report experimental
uncertainties for Ala of nearly ±1 pK unit at 150◦C, but less than ±0.1 at 225◦C. All reported
experimental errors for Pro are less than ±0.05 pK unit.) The solid curve represents values of
pK calculated at PSAT using the values of the revised HKF parameters and ∆G◦

f , ∆H
◦
f and S◦

Pr ,Tr
of [AABB+] and [AABB].
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Fig. 17. ∆C◦
P,n as a function of 1/ (T −Θ)2 of aqueous propanol, butane-1,4-diol, hexane-

1,6-diol, propylamine, butane-1,4-diamine, and hexane-1,6-diamine. The symbols represent
values of ∆C◦

P,n calculated from Eqs. (A5) and (A10) using values of ω estimated with the
group contributions given in Table 10 and experimental values of C◦

P from (©) Inglese and
Wood, 1996; (�) Inglese et al., 1997; (N) Makhatadze and Privalov, 1989; (©) Jolicoeur and
Lacroix, 1976; (2) Nichols et al., 1976; (M) Cabani et al., 1981. The error bars represent an
estimated 5% uncertainty in the value of C◦

P . The intercepts and slopes of the lines correspond
to values of c1 and c2 that can be calculated with the organic group contributions given in
Table 10.
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Fig. 18. C◦
P of crystalline Leu as a function of temperature. The symbols represent experimental

data taken from Hutchens et al. (1963), but the regression line corresponds to Eq. (D1) with
a = 6.5 cal mol−1 K−1, b = 0.1335 cal mol−1 K−2 and c = 0 cal mol−1 K.
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Fig. 19. ∆H◦
f , S

◦
Pr ,Tr

, V ◦ and C◦
P at 25◦C and 1 bar and b of crystalline amino acids as a function

of the corresponding property of the resepective sidechain groups, calculated using the group
contributions given by Richard and Helgeson (1998).
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Fig. 20. Comparison of calculated and experimental values of ∆H◦
sol of DRN1 HUMAN (©),

SOMA HUMAN (�), Protropin HUMAN (N) and IGFA HUMAN (H). Error bars represent ±20%
uncertainty in the experimental values of ∆H◦

sol taken from Souillac et al. (2002). Symbols rep-
resent values of ∆H◦

sol calculated for nonionized unfolded proteins. Also shown for LYC CHICK
are calculated values of ∆H◦

sol and the experimental values of −∆H◦
cr of the orthorhombic (♦)

and tetragonal (2) crystal forms taken from Howard et al. (1988).
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Fig. 21. C◦
P of crystalline proteins as a function of temperature. The symbols represent ex-

perimental values of C◦
P taken from (©) Zhang et al. (1996), (2) Di Lorenzo et al. (1999), (4)

Kulagina et al. (2001), (5) Mrevlishvili (1986) and (♦) Hutchens et al. (1969). The regression
curves are consistent with Eq. (D1) and the values of a and b of the crystalline sidechain and
backbone groups given in Table 16.
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